Description Usage Details References Examples
This is just an example on how to compute the location and joint location probabilities #' using simulated data. All the files used in this example are supposed to be produced using the simulation software. The "simulation.xml" file is an exception and it is an input file for the simulation software. The files used in this example are provided with the destim package.
1 | example()
|
This is just an example on how to compute the location and joint location probabilities #' using simulated data. All the files used in this example are supposed to be produced using the simulation software. The "simulation.xml" file is an exception and it is an input file for the simulation software. The files used in this example are provided with the destim package.
https://github.com/MobilePhoneESSnetBigData
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 | library(data.table)
library(tidyr)
library(stringr)
library(Matrix)
library(xml2)
# set file names
path_root = 'extdata'
fileGridName <- system.file(path_root, 'grid.csv', package = 'destim')
fileEventsInfoName <- system.file(path_root, 'AntennaInfo_MNO_MNO1.csv', package = 'destim')
signalFileName <- system.file(path_root, 'SignalMeasure_MNO1.csv', package = 'destim')
simulationFileName <- system.file(path_root, 'simulation.xml', package = 'destim')
# read simulation params
simulation.xml <- as_list(read_xml(simulationFileName))
simulation.xml <- simulation.xml$simulation
start_time <- as.numeric(simulation.xml$start_time)
end_time <- as.numeric(simulation.xml$end_time)
time_increment <- as.numeric(simulation.xml$time_increment)
times <-
seq(from = start_time,
to = (end_time - time_increment),
by = time_increment)
sigMin <- as.numeric(simulation.xml$conn_threshold)
# read grid params
gridParam <-
fread(
fileGridName,
sep = ',',
header = TRUE,
stringsAsFactors = FALSE
)
ncol_grid <- gridParam[['No Tiles Y']]
nrow_grid <- gridParam[['No Tiles X']]
tile_sizeX <- gridParam[['X Tile Dim']]
tile_sizeY <- gridParam[['Y Tile Dim']]
ntiles <- ncol_grid * nrow_grid
# tile-rasterCell equivalence
tileEquiv.dt <- data.table(tileEquivalence(ncol_grid, nrow_grid))
# read Received Signal Strength file and compute emission probabilities
RSS <-
fread(
signalFileName,
sep = ",",
header = TRUE,
stringsAsFactors = FALSE
)
setnames(RSS, c('antennaID', 0:(ntiles - 1)))
RSS <- melt(
RSS,
id.vars = 'antennaID',
variable.name = 'tile',
variable.factor = FALSE,
value.name = 'RSS'
)
RSS[, RSS := ifelse(RSS < sigMin, NA, RSS)]
# compute event location (emission probabilities)
RSS <-
RSS[, eventLoc := 10 ** RSS / sum(10 ** RSS, na.rm = TRUE), by = 'tile']
RSS <- RSS[is.na(eventLoc), eventLoc := 0]
RSS[, tile := as.numeric(tile)]
RSS <- RSS[tileEquiv.dt, on = 'tile'][, tile := NULL]
RSS <-
dcast(RSS, rasterCell ~ antennaID, value.var = 'eventLoc')[, rasterCell := NULL]
emissionProbs <- Matrix(data = as.matrix(RSS))
dimnames(emissionProbs)[[1]] <-
as.character(1:dim(emissionProbs)[1])
# read and process network event data
allEvents.dt <-
fread(
fileEventsInfoName,
sep = ',',
stringsAsFactors = FALSE,
colClasses = c(
'integer',
'character',
'character',
'character',
'numeric',
'numeric',
'character'
)
)
allEvents.dt <- allEvents.dt[!duplicated(allEvents.dt)]
setnames(allEvents.dt ,
c('time', 'antennaID', 'eventCode', 'device', 'x', 'y', 'tile'))
allEvents.dt[, obsVar := do.call(paste, c(.SD, sep = "-")),
.SDcols = c('antennaID', 'eventCode')]
events.dt <- allEvents.dt[eventCode %in% c('0', '2', '3')]
events.dt_noDup <-
copy(events.dt)[, list(eventCode = as.character(min(as.numeric(eventCode)))),
by = c("time", "device")]
events.dt <-
merge(events.dt_noDup,
events.dt,
by = names(events.dt_noDup),
all.x = TRUE)
events.dt <-
events.dt[!duplicated(events.dt, by = c("time", "device", "eventCode"))][,
.(time, device, eventCode, antennaID, obsVar)][order(time)]
# Set maximum velocity (from an external source)
vMax_ms <- 16
# Set time padding params
distMax <- vMax_ms * time_increment
pad_coef <-
as.integer(ceiling(distMax / max(tile_sizeX, tile_sizeY)))
pad_coef <- pad_coef + 1
# Initial state distribution (PRIOR)
# Prepare prior_network distribution (uniform prior)
prior_network <- rep(1 / ntiles, ntiles)
# Initialize HMM
model <- HMMrectangle(nrow_grid, ncol_grid)
emissions(model) <- emissionProbs
model <- initparams(model) # initialize transition prob
model <-
minparams(model) # parameter reduction according to restrictions
istates(model) <- prior_network
# comute posterior location probabilities
deviceIDs <- sort(unique(events.dt$device))
# for each device
for (i in seq(along = deviceIDs)) {
devID <- deviceIDs[i]
cat(paste0(' device ', devID, '...\n'))
cat(' Selecting network events...')
events_device.dt <- events.dt[device == devID, .(device, time, antennaID)][
order(device, time)]
antennas_deviceID <- unlist(events_device.dt[, c("antennaID")])
if (!all(is.na(antennas_deviceID))) {
# Fit and compute HMM model
observedValues_pad <-
rep(NA, pad_coef * length(antennas_deviceID))
observedValues_pad[seq(1, length(observedValues_pad), by = pad_coef)] <-
antennas_deviceID
colEvents <- sapply(observedValues_pad,
function(x)
ifelse(!is.na(x), which(x == colnames(emissionProbs)), NA))
# Fit HMM - ML estimation of transition probabilities
fitTry <-
try(model_devID <- fit(model, colEvents, init = TRUE))
if (inherits(fitTry, "try-error")) {
stop("Fit model fails")
}
ssTry <- try(A <- sstates(model_devID, colEvents))
if (inherits(ssTry, "try-error")) {
stop("[compute_HMM] Smooth States fails")
}
B <- scpstates(model_devID, colEvents)
# Transform output of the HMM model to sparse matrix file format
transform_output <- transform_postLoc(
postLocP = A,
postLocJointP = B,
observedValues = antennas_deviceID,
times = times,
t_increment = time_increment,
ntiles = ntiles,
pad_coef = pad_coef,
tileEquiv.dt = tileEquiv.dt,
devID = devID,
sparse_postLocP = TRUE,
sparse_postLocJointP = TRUE
)
rm(A, B)
gc()
fwrite(
transform_output$postLocProb[, .(tile , time, postLocProb)],
paste0('postLocProb_', devID, '.csv'),
col.names = FALSE,
row.names = FALSE,
sep = ','
)
transform_output$postLocJointProb[, time_to := time_from + time_increment]
fwrite(
transform_output$postLocJointProb[, .(time_from, time_to, tile_from,
tile_to, postLocProb)],
paste0('postLocJointProb_', devID, '.csv'),
col.names = FALSE,
row.names = FALSE,
sep = ','
)
}
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.