test_that('test-predict-new', {
data <- list(lisbon[1:200, ], testing_data[1:200, ], iris[1:110, ], compas[1:200, ])
new_data <- list(lisbon[201:246, ], testing_data[201:250, ], iris[111:150, ], compas[201:250, ])
targets <- c('Price', 'y', 'Species', 'Two_yr_Recidivism')
tryCatch({ # For CRAN, we need to omit catboost, as it is not there.
find.package('catboost')
engine <- c('ranger', 'xgboost', 'decision_tree', 'lightgbm', 'catboost')
},
error = function(cond) {
engine <- c('ranger', 'xgboost', 'decision_tree', 'lightgbm')
})
for (i in 1:length(data)) {
output <- train(data = data[[i]],
y = targets[i],
type = 'auto',
engine = engine,
verbose = FALSE,
train_test_split = c(0.6, 0.2, 0.2),
split_seed = NULL,
bayes_iter = 0,
random_evals = 1,
metrics = 'auto',
sort_by = 'auto',
parallel = FALSE,
custom_preprocessing = NULL)
expect_no_error(
predictions <- predict_new(train_out = output,
data = new_data[[i]],
verbose = FALSE))
# Part of select models tests.
expect_no_error(
new_output <- select_models(train_output = output,
models = names(output$models_list)[c(1, 2, 3, 4)]))
expect_no_error(
predictions_new <- predict_new(train_out = new_output,
data = new_data[[i]],
verbose = FALSE))
expect_equal(length(predictions), 10)
for (j in 1:(length(predictions) - 1)) {
expect_equal(length(as.vector(predictions[[j]])), length(as.vector(predictions[[j + 1]])))
}
}
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.