View source: R/annotation_functions.R
annotationCloud | R Documentation |
Given outputs from the Miko scoring pipeline, the top cell-type annotations fare visualized using word clouds.
annotationCloud(
object,
object.group = "seurat_clusters",
score,
score.group,
score.cell.type,
score.p,
score.fdr = NULL,
score.coherence.fraction = NULL,
score.frequent.flier = NULL,
fdr.correction = T,
p.threshold = 0.05,
coherence.threshold = 0.8,
show.n.terms = 15,
verbose = T
)
object |
Seurat Object. |
object.group |
name of object meta data field specifying cluster membership. Default is "seurat_clusters". |
score |
vector of Miko scores |
score.group |
vector of group memberships |
score.cell.type |
vector of cell-type names/labels. |
score.p |
vector of p values. |
score.fdr |
vector of fdr values. Optional. |
score.coherence.fraction |
vector of coherence fractions. See coherentFraction(...) for details. |
score.frequent.flier |
vector of logicals specifying whether score belongs to frequent flier. |
fdr.correction |
Specify whether p-value should be corrected using Benjamini & Hochberg method. Default is T. |
p.threshold |
p value threshold. Default is 0.05. |
coherence.threshold |
Numerical [0,1] specifying minimal coherence required to qualify for visualization. Default is 0.8. |
show.n.terms |
Maximal number of cell-type terms shown in word cloud. Default is 15. |
verbose |
Logical, specify whether process is printed. Default is T. |
list of ggplot handles
Nicholas Mikolajewicz
mikoScore
for miko scoring, coherentFraction
for coherence scoring
df.score_summary <- data.frame(cluster = df.merge$cluster,
cell.type = df.merge$gs,
miko_score = signif(df.merge$miko_score, 3) ,
p = signif(df.merge$p),
fdr = signif(df.merge$fdr),
coherence_fraction = signif(df.merge$coherence_fraction))
plt.cloud <- annotationCloud(object = so.query_scored,
object.group = "seurat_clusters",
score = df.score_summary$miko_score,
score.group = df.score_summary$cluster,
score.cell.type = df.score_summary$cell.type,
score.p = df.score_summary$p,
score.fdr = df.score_summary$fdr,
score.coherence.fraction = df.score_summary$coherence_fraction,
score.frequent.flier = NULL,
fdr.correction = T,
p.threshold = 0.05,
coherence.threshold = 0.9,
show.n.terms = 15,
verbose = T)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.