#-- remover duplicados
popMunic %>%
distinct() -> popMunic2
table(popMunic2$year)
#-- atualizar 2020
pop2020 <- readxl::read_excel('raw/tabela6579 (1).xlsx', skip=2) %>%
drop_na() %>%
set_names('ibge7', 'munic', 'pop') %>%
mutate(pop = as.numeric(pop),
ibge7 = as.numeric(ibge7),
ibge6 = as.numeric(str_sub(ibge7,1,6)),
year = 2020,
ibge2 = as.numeric(str_sub(ibge7,1,2)),
uf = str_sub(munic, -3,-2)) %>%
select(uf, ibge2, ibge7, ibge6, year, pop)
popMunic2 %>%
bind_rows(pop2020) -> popMunic
usethis::use_data(popMunic, overwrite = TRUE)
nexo.utils::popMunic %>%
mutate(type = case_when(year <= 1980 ~ "Censo",
year %in% c(1991,2000,2010) ~ "Census",
TRUE ~ "Estimated")) -> popMunic
usethis::use_data(popMunic, overwrite = TRUE)
#-- info partidos
infoPartidos %>%
set_names('party', 'abbrev2020', 'abbrev2016', 'number', 'hex') %>%
drop_na(number) %>%
add_row(party="Partido Pátria Livre",
abbrev2020 = NA,
abbrev2016 = "PPL",
number = 54,
hex = "#CB8C91") %>%
mutate(active = ifelse(number %in% c(31,54,44), FALSE, TRUE)) -> infoParty
infoParty %>%
mutate(hex = str_to_upper(hex)) -> infoParty
usethis::use_data(infoParty, overwrite = TRUE)
#-- mapState
mapState %>%
left_join(nexo.utils::infoState[,c(1:3)], by=c('ibge2')) -> mapState
usethis::use_data(mapState, overwrite = TRUE)
#-- atualizar infoMunic
nexo.utils::infoMunic %>%
group_by(ibge7) %>%
mutate(n=n()) %>%
filter(n>1)-> x2 %>%
nexo.utils::infoMunic %>%
filter(muni!="MURICI" | (muni=="MURICI" & metropolitan == "RM Maceió")) -> x2
x2 %>%
mutate(is_metro = ifelse(is.na(metropolitan), TRUE, FALSE),
metro = metropolitan,
is_capital = ifelse(capital==1, TRUE, FALSE)) %>%
select(-one_of('metropolitan', 'capital')) -> infoMunic
View(infoMunic)
nexo.utils::infoMunic %>%
mutate(is_metro = ifelse(is_metro, FALSE, TRUE),
is_capital = replace_na(is_capital, FALSE)) -> infoMunic
usethis::use_data(infoMunic, overwrite = TRUE)
# Info state e populacao --------------------------------------------------
nexo.utils::infoState %>%
select(-one_of("pop")) -> infoState
usethis::use_data(infoState, overwrite = TRUE)
nexo.utils::popMunic %>%
group_by(uf, ibge2, year) %>%
summarise(pop = sum(pop, na.rm=T)) -> popState
usethis::use_data(popState, overwrite = TRUE)
popState %>%
filter(str_sub(ibge2,1,1)==5) %>%
ggplot(aes(x=year, y=pop, col=uf)) + geom_line() +
scale_y_continuous(labels=scales::comma)
# Corrigir mapa ------------------------------------------------------------
library(sf)
st_crs(nexo.utils::mapMunic)
st_crs(nexo.utils::mapState)
# mapCountries <- st_read("mapCountries2/mapCountries2.shp")
st_crs(mapCountries) <- st_crs(nexo.utils::mapMunic)
usethis::use_data(mapCountries, overwrite = TRUE)
# Pop 2021 ----------------------------------------------------------------
library(tidyverse)
library(readxl)
pop2021 <- read_excel("raw/estimativa_dou_2021.xls",
sheet = "Municípios", skip = 1) %>%
set_names("uf", "ibge2", "ibge5", "nome", "pop") %>%
mutate(year=2021,
ibge7 = as.numeric(paste0(ibge2,ibge5)),
type = "Estimated",
ibge6 = as.numeric(str_sub(ibge7,1,6)),
pop = as.numeric(gsub("\\.", "", gsub("\\(.*", "", pop)))) %>%
select(uf, ibge2, ibge6, ibge7, year, pop, type) %>%
drop_na()
popMunic %>%
select(uf, ibge2, ibge6, ibge7, year, pop, type) %>%
bind_rows(pop2021) -> popMunic
usethis::use_data(popMunic, overwrite = TRUE)
popMunic %>%
group_by(uf, ibge2, year) %>%
summarise(pop = sum(pop, na.rm=T)) -> popState
usethis::use_data(popState, overwrite = TRUE)
#-- mollweide no mapa
library(tidyverse)
library(sf)
mapCountries <- nexo.utils::mapCountries %>%
st_transform(crs=st_crs("+proj=moll +x_0=0 +y_0=0 +lat_0=0 +lon_0=0"))
usethis::use_data(mapCountries, overwrite = TRUE)
##-- fao stat
library(readxl)
library(tidyverse)
library(sf)
fao_code <- read_excel("raw/fao_code.xlsx")
nexo.utils::infoCountries %>%
left_join(fao_code[,c(2,3)], by=c('iso3'='ISO3')) %>%
mutate(isCountry = ifelse(isCountry==1, TRUE, FALSE),
isSmall = ifelse(isSmall=="Yes", TRUE, FALSE),
isEU = ifelse(isEU=="Yes", TRUE, FALSE)) -> infoCountries
usethis::use_data(infoCountries, overwrite = TRUE)
# Atualizar info countries ------------------------------------------------
library(tidyverse)
infoCountries <- readxl::read_excel("raw/countries.xlsx") %>%
select(-region) %>%
mutate_at(vars(21:24), round, digits=2) %>%
mutate(isIndependent = ifelse(isIndependent=="VERDADEIRO", TRUE, FALSE),
isEU = ifelse(isEU=="VERDADEIRO", TRUE, FALSE),
isUN = ifelse(isUN=="VERDADEIRO", TRUE, FALSE),
parentState = ifelse(parentState=="NA", NA, parentState)) %>%
rename(wasUSSR = wasURSS)
usethis::use_data(infoCountries, overwrite = TRUE)
# Maps --------------------------------------------------------------------
mapCountries <- readRDS("./raw/mapCountries.rds")
usethis::use_data(mapCountries, overwrite = TRUE)
#-- atualizar info state
infoState %>%
select(-governor, -pop) %>%
rename(n_munic = municip) -> infoState
usethis::use_data(infoState, overwrite = TRUE)
#-- atualizar info munic
#- litoraneos
lit <- read_excel("./raw/litoraneos.xlsx", skip=3) %>%
select(2) %>%
set_names("ibge7") %>%
mutate_all(as.numeric) %>%
drop_na() %>%
mutate(is_coast = TRUE)
#- fronteiricos
brd <- read_excel("./raw/fronteiricos.xlsx", skip=3) %>%
select(2) %>%
set_names("ibge7") %>%
mutate_all(as.numeric) %>%
drop_na() %>%
mutate(is_border = TRUE)
#- atualizacao
infoMunic %>%
rename(ibge1 = regionCode,
region = regionName,
ibge_meso = mesoCode,
meso = mesoName,
ibge_micro = mesoCode,
micro = microName) %>%
select(-muni) %>%
left_join(lit, by="ibge7") %>%
left_join(brd, by="ibge7") %>%
mutate_at(vars(is_coast, is_border), replace_na, FALSE) -> infoMunic
usethis::use_data(infoMunic, overwrite = TRUE)
library(tidyverse)
library(nexo.utils)
infoMunic %>%
rename(ibge_meso = ibge_micro,
ibge_micro = microCode) -> infoMunic
usethis::use_data(infoMunic, overwrite = TRUE)
#-- nova atualizacao popMunic
library(tidyverse)
library(readxl)
#-- sistematizacao censo
pop1 <- read_excel("./raw/ipeadata[18-01-2023-12-39].xls") %>%
pivot_longer(cols = `1872`:`2010`) %>%
drop_na(value) %>%
set_names("uf", "codigo_ibge7", "municipio", "ano", "populacao") %>%
mutate(ano = as.numeric(ano),
codigo_ibge7 = as.numeric(codigo_ibge7))
pop2 <- read_xlsx("./raw/tabela4709.xlsx", skip=3) %>%
select(1,3) %>%
set_names("codigo_ibge7", "populacao") %>%
mutate_at(vars(codigo_ibge7), as.numeric) %>%
mutate(ano = 2022) %>%
drop_na()
pop1 %>%
bind_rows(pop2) %>%
arrange(ano) %>%
rename(ibge7=codigo_ibge7,
year=ano,
pop=populacao) %>%
select(ibge7, year, pop) %>%
mutate(ibge2 = as.numeric(str_sub(ibge7, 1,2))) %>%
left_join(nexo.utils::infoState %>%
select(ibge2, uf)) %>%
mutate(type=ifelse(year%in%c(1996,2007), "Population count",
"Census")) -> popMunic
#---
popMunic %>%
group_by(uf, ibge2, year, type) %>%
summarise(pop = sum(pop, na.rm=T)) -> popState
usethis::use_data(popMunic, overwrite = TRUE)
usethis::use_data(popState, overwrite = TRUE)
#-- infoCountries
library(tidyverse)
infoCountries <- nexo.utils::infoCountries %>%
mutate(isUN = case_when(iso3 == "HKG" ~ FALSE,
iso3 == "DMA" ~ TRUE,
TRUE ~ isUN))
usethis::use_data(infoCountries, overwrite = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.