library(shiny)
library(DT)
mainColumns <- c("description",
"databaseId",
"rr",
"ci95Lb",
"ci95Ub",
"p",
"calibratedRr",
"calibratedCi95Lb",
"calibratedCi95Ub",
"calibratedP")
mainColumnNames <- c("<span title=\"Analysis\">Analysis</span>",
"<span title=\"Data source\">Data source</span>",
"<span title=\"Hazard ratio (uncalibrated)\">HR</span>",
"<span title=\"Lower bound of the 95 percent confidence interval (uncalibrated)\">LB</span>",
"<span title=\"Upper bound of the 95 percent confidence interval (uncalibrated)\">UB</span>",
"<span title=\"Two-sided p-value (uncalibrated)\">P</span>",
"<span title=\"Hazard ratio (calibrated)\">Cal.HR</span>",
"<span title=\"Lower bound of the 95 percent confidence interval (calibrated)\">Cal.LB</span>",
"<span title=\"Upper bound of the 95 percent confidence interval (calibrated)\">Cal.UB</span>",
"<span title=\"Two-sided p-value (calibrated)\">Cal.P</span>")
shinyServer(function(input, output, session) {
if (blind) {
hideTab(inputId = "detailsTabsetPanel", target = "Kaplan-Meier")
}
if (!exists("cmInteractionResult")) {
hideTab(inputId = "detailsTabsetPanel", target = "Subgroups")
}
observe({
targetId <- exposureOfInterest$exposureId[exposureOfInterest$exposureName == input$target]
comparatorId <- exposureOfInterest$exposureId[exposureOfInterest$exposureName == input$comparator]
tcoSubset <- tcos[tcos$targetId == targetId & tcos$comparatorId == comparatorId, ]
outcomes <- outcomeOfInterest$outcomeName[outcomeOfInterest$outcomeId %in% tcoSubset$outcomeId]
updateSelectInput(session = session,
inputId = "outcome",
choices = unique(outcomes))
})
resultSubset <- reactive({
targetId <- exposureOfInterest$exposureId[exposureOfInterest$exposureName == input$target]
comparatorId <- exposureOfInterest$exposureId[exposureOfInterest$exposureName == input$comparator]
outcomeId <- outcomeOfInterest$outcomeId[outcomeOfInterest$outcomeName == input$outcome]
analysisIds <- cohortMethodAnalysis$analysisId[cohortMethodAnalysis$description %in% input$analysis]
databaseIds <- input$database
if (length(analysisIds) == 0) {
analysisIds <- -1
}
if (length(databaseIds) == 0) {
databaseIds <- "none"
}
results <- getMainResults(connection = connection,
targetIds = targetId,
comparatorIds = comparatorId,
outcomeIds = outcomeId,
databaseIds = databaseIds,
analysisIds = analysisIds)
results <- results[order(results$analysisId), ]
if (blind) {
results$rr <- rep(NA, nrow(results))
results$ci95Ub <- rep(NA, nrow(results))
results$ci95Lb <- rep(NA, nrow(results))
results$logRr <- rep(NA, nrow(results))
results$seLogRr <- rep(NA, nrow(results))
results$p <- rep(NA, nrow(results))
results$calibratedRr <- rep(NA, nrow(results))
results$calibratedCi95Ub <- rep(NA, nrow(results))
results$calibratedCi95Lb <- rep(NA, nrow(results))
results$calibratedLogRr <- rep(NA, nrow(results))
results$calibratedSeLogRr <- rep(NA, nrow(results))
results$calibratedP <- rep(NA, nrow(results))
}
return(results)
})
selectedRow <- reactive({
idx <- input$mainTable_rows_selected
if (is.null(idx)) {
return(NULL)
} else {
subset <- resultSubset()
if (nrow(subset) == 0) {
return(NULL)
}
row <- subset[idx, ]
row$psStrategy <- gsub("^PS ", "", gsub(", .*$", "", cohortMethodAnalysis$description[cohortMethodAnalysis$analysisId == row$analysisId]))
return(row)
}
})
output$rowIsSelected <- reactive({
return(!is.null(selectedRow()))
})
outputOptions(output, "rowIsSelected", suspendWhenHidden = FALSE)
balance <- reactive({
row <- selectedRow()
if (is.null(row)) {
return(NULL)
} else {
targetId <- exposureOfInterest$exposureId[exposureOfInterest$exposureName == input$target]
comparatorId <- exposureOfInterest$exposureId[exposureOfInterest$exposureName == input$comparator]
outcomeId <- outcomeOfInterest$outcomeId[outcomeOfInterest$outcomeName == input$outcome]
balance <- getCovariateBalance(connection = connection,
targetId = targetId,
comparatorId = comparatorId,
databaseId = row$databaseId,
analysisId = row$analysisId,
outcomeId = outcomeId)
return(balance)
}
})
output$isMetaAnalysis <- reactive({
row <- selectedRow()
isMetaAnalysis <- !is.null(row) && (row$databaseId %in% metaAnalysisDbIds)
if (isMetaAnalysis) {
hideTab("detailsTabsetPanel", "Attrition", session = session)
hideTab("detailsTabsetPanel", "Population characteristics", session = session)
hideTab("detailsTabsetPanel", "Kaplan-Meier", session = session)
hideTab("detailsTabsetPanel", "Propensity model", session = session)
showTab("detailsTabsetPanel", "Forest plot", session = session)
} else {
showTab("detailsTabsetPanel", "Attrition", session = session)
showTab("detailsTabsetPanel", "Population characteristics", session = session)
if (!blind) {
showTab("detailsTabsetPanel", "Kaplan-Meier", session = session)
}
showTab("detailsTabsetPanel", "Propensity model", session = session)
hideTab("detailsTabsetPanel", "Forest plot", session = session)
}
return(isMetaAnalysis)
})
outputOptions(output, "isMetaAnalysis", suspendWhenHidden = FALSE)
output$mainTable <- renderDataTable({
table <- resultSubset()
if (is.null(table) || nrow(table) == 0) {
return(NULL)
}
table$description <- cohortMethodAnalysis$description[match(table$analysisId, cohortMethodAnalysis$analysisId)]
table <- table[, mainColumns]
table$rr <- prettyHr(table$rr)
table$ci95Lb <- prettyHr(table$ci95Lb)
table$ci95Ub <- prettyHr(table$ci95Ub)
table$p <- prettyHr(table$p)
table$calibratedRr <- prettyHr(table$calibratedRr)
table$calibratedCi95Lb <- prettyHr(table$calibratedCi95Lb)
table$calibratedCi95Ub <- prettyHr(table$calibratedCi95Ub)
table$calibratedP <- prettyHr(table$calibratedP)
colnames(table) <- mainColumnNames
options = list(pageLength = 15,
searching = FALSE,
lengthChange = TRUE,
ordering = TRUE,
paging = TRUE)
selection = list(mode = "single", target = "row")
table <- datatable(table,
options = options,
selection = selection,
rownames = FALSE,
escape = FALSE,
class = "stripe nowrap compact")
return(table)
})
output$powerTableCaption <- renderUI({
row <- selectedRow()
if (!is.null(row)) {
text <- "<strong>Table 1a.</strong> Number of subjects, follow-up time (in years), number of outcome
events, and event incidence rate (IR) per 1,000 patient years (PY) in the target (<em>%s</em>) and
comparator (<em>%s</em>) group after propensity score adjustment, as well as the minimum detectable relative risk (MDRR).
Note that the IR does not account for any stratification."
return(HTML(sprintf(text, input$target, input$comparator)))
} else {
return(NULL)
}
})
output$powerTable <- renderTable({
row <- selectedRow()
if (is.null(row)) {
return(NULL)
} else {
if (row$databaseId %in% metaAnalysisDbIds) {
results <- getMainResults(connection = connection,
targetIds = row$targetId,
comparatorIds = row$comparatorId,
outcomeIds = row$outcomeId,
analysisIds = row$analysisId)
table <- preparePowerTable(results, cohortMethodAnalysis, includeDatabaseId = TRUE)
table$description <- NULL
if (blind) {
table$targetOutcomes <- NA
table$comparatorOutcomes <- NA
table$targetIr <- NA
table$comparatorIr <- NA
}
table$databaseId[table$databaseId %in% metaAnalysisDbIds] <- "Summary"
colnames(table) <- c("Source",
"Target subjects",
"Comparator subjects",
"Target years",
"Comparator years",
"Target events",
"Comparator events",
"Target IR (per 1,000 PY)",
"Comparator IR (per 1,000 PY)",
"MDRR")
} else {
table <- preparePowerTable(row, cohortMethodAnalysis)
table$description <- NULL
table$databaseId <- NULL
if (blind) {
table$targetOutcomes <- NA
table$comparatorOutcomes <- NA
table$targetIr <- NA
table$comparatorIr <- NA
}
colnames(table) <- c("Target subjects",
"Comparator subjects",
"Target years",
"Comparator years",
"Target events",
"Comparator events",
"Target IR (per 1,000 PY)",
"Comparator IR (per 1,000 PY)",
"MDRR")
}
return(table)
}
})
output$timeAtRiskTableCaption <- renderUI({
row <- selectedRow()
if (!is.null(row)) {
text <- "<strong>Table 1b.</strong> Time (days) at risk distribution expressed as
minimum (min), 25th percentile (P25), median, 75th percentile (P75), and maximum (max) in the target
(<em>%s</em>) and comparator (<em>%s</em>) cohort after propensity score adjustment."
return(HTML(sprintf(text, input$target, input$comparator)))
} else {
return(NULL)
}
})
output$timeAtRiskTable <- renderTable({
row <- selectedRow()
if (is.null(row)) {
return(NULL)
} else {
targetId <- exposureOfInterest$exposureId[exposureOfInterest$exposureName == input$target]
comparatorId <- exposureOfInterest$exposureId[exposureOfInterest$exposureName == input$comparator]
outcomeId <- outcomeOfInterest$outcomeId[outcomeOfInterest$outcomeName == input$outcome]
if (row$databaseId %in% metaAnalysisDbIds) {
followUpDist <- getCmFollowUpDist(connection = connection,
targetId = targetId,
comparatorId = comparatorId,
outcomeId = outcomeId,
analysisId = row$analysisId)
} else {
followUpDist <- getCmFollowUpDist(connection = connection,
targetId = targetId,
comparatorId = comparatorId,
outcomeId = outcomeId,
databaseId = row$databaseId,
analysisId = row$analysisId)
}
table <- prepareFollowUpDistTable(followUpDist)
return(table)
}
})
attritionPlot <- reactive({
row <- selectedRow()
if (is.null(row)) {
return(NULL)
} else {
targetId <- exposureOfInterest$exposureId[exposureOfInterest$exposureName == input$target]
comparatorId <- exposureOfInterest$exposureId[exposureOfInterest$exposureName == input$comparator]
outcomeId <- outcomeOfInterest$outcomeId[outcomeOfInterest$outcomeName == input$outcome]
attrition <- getAttrition(connection = connection,
targetId = targetId,
comparatorId = comparatorId,
outcomeId = outcomeId,
databaseId = row$databaseId,
analysisId = row$analysisId)
plot <- drawAttritionDiagram(attrition)
return(plot)
}
})
output$attritionPlot <- renderPlot({
return(attritionPlot())
})
output$downloadAttritionPlotPng <- downloadHandler(filename = "Attrition.png",
contentType = "image/png",
content = function(file) {
ggplot2::ggsave(file, plot = attritionPlot(), width = 6, height = 7, dpi = 400)
})
output$downloadAttritionPlotPdf <- downloadHandler(filename = "Attrition.pdf",
contentType = "application/pdf",
content = function(file) {
ggplot2::ggsave(file = file, plot = attritionPlot(), width = 6, height = 7)
})
output$attritionPlotCaption <- renderUI({
row <- selectedRow()
if (is.null(row)) {
return(NULL)
} else {
text <- "<strong>Figure 1.</strong> Attrition diagram, showing the Number of subjects in the target (<em>%s</em>) and
comparator (<em>%s</em>) group after various stages in the analysis."
return(HTML(sprintf(text, input$target, input$comparator)))
}
})
output$table1Caption <- renderUI({
row <- selectedRow()
if (is.null(row)) {
return(NULL)
} else {
text <- "<strong>Table 2.</strong> Select characteristics before and after propensity score adjustment, showing the (weighted)
percentage of subjects with the characteristics in the target (<em>%s</em>) and comparator (<em>%s</em>) group, as
well as the standardized difference of the means."
return(HTML(sprintf(text, input$target, input$comparator)))
}
})
output$table1Table <- renderDataTable({
row <- selectedRow()
if (is.null(row)) {
return(NULL)
} else {
bal <- balance()
if (nrow(bal) == 0) {
return(NULL)
}
table1 <- prepareTable1(balance = bal,
beforeLabel = paste("Before PS adjustment"),
afterLabel = paste("After PS adjustment"))
container <- htmltools::withTags(table(
class = 'display',
thead(
tr(
th(rowspan = 3, "Characteristic"),
th(colspan = 3, class = "dt-center", paste("Before PS adjustment")),
th(colspan = 3, class = "dt-center", paste("After PS adjustment"))
),
tr(
lapply(table1[1, 2:ncol(table1)], th)
),
tr(
lapply(table1[2, 2:ncol(table1)], th)
)
)
))
options <- list(columnDefs = list(list(className = 'dt-right', targets = 1:6)),
searching = FALSE,
ordering = FALSE,
paging = FALSE,
bInfo = FALSE)
table1 <- datatable(table1[3:nrow(table1), ],
options = options,
rownames = FALSE,
escape = FALSE,
container = container,
class = "stripe nowrap compact")
return(table1)
}
})
output$propensityModelTable <- renderDataTable({
row <- selectedRow()
if (is.null(row)) {
return(NULL)
} else {
targetId <- exposureOfInterest$exposureId[exposureOfInterest$exposureName == input$target]
comparatorId <- exposureOfInterest$exposureId[exposureOfInterest$exposureName == input$comparator]
model <- getPropensityModel(connection = connection,
targetId = targetId,
comparatorId = comparatorId,
databaseId = row$databaseId,
analysisId = row$analysisId)
table <- preparePropensityModelTable(model)
options = list(columnDefs = list(list(className = 'dt-right', targets = 0)),
pageLength = 15,
searching = FALSE,
lengthChange = TRUE,
ordering = TRUE,
paging = TRUE)
selection = list(mode = "single", target = "row")
table <- datatable(table,
options = options,
selection = selection,
rownames = FALSE,
escape = FALSE,
class = "stripe nowrap compact")
return(table)
}
})
psDistPlot <- reactive({
row <- selectedRow()
if (is.null(row)) {
return(NULL)
} else {
if (row$databaseId %in% metaAnalysisDbIds) {
ps <- getPs(connection = connection,
targetIds = row$targetId,
comparatorIds = row$comparatorId,
analysisId = row$analysisId)
} else {
targetId <- exposureOfInterest$exposureId[exposureOfInterest$exposureName == input$target]
comparatorId <- exposureOfInterest$exposureId[exposureOfInterest$exposureName == input$comparator]
outcomeId <- outcomeOfInterest$outcomeId[outcomeOfInterest$outcomeName == input$outcome]
ps <- getPs(connection = connection,
targetIds = targetId,
comparatorIds = comparatorId,
analysisId = row$analysisId,
databaseId = row$databaseId)
}
plot <- plotPs(ps, input$target, input$comparator)
return(plot)
}
})
output$psDistPlot <- renderPlot({
return(psDistPlot())
})
output$downloadPsDistPlotPng <- downloadHandler(filename = "Ps.png",
contentType = "image/png",
content = function(file) {
ggplot2::ggsave(file, plot = psDistPlot(), width = 5, height = 3.5, dpi = 400)
})
output$downloadPsDistPlotPdf <- downloadHandler(filename = "Ps.pdf",
contentType = "application/pdf",
content = function(file) {
ggplot2::ggsave(file = file, plot = psDistPlot(), width = 5, height = 3.5)
})
balancePlot <- reactive({
bal <- balance()
if (is.null(bal) || nrow(bal) == 0) {
return(NULL)
} else {
row <- selectedRow()
plot <- plotCovariateBalanceScatterPlot(balance = bal,
beforeLabel = "Before propensity score adjustment",
afterLabel = "After propensity score adjustment")
return(plot)
}
})
output$balancePlot <- renderPlot({
return(balancePlot())
})
output$downloadBalancePlotPng <- downloadHandler(filename = "Balance.png",
contentType = "image/png",
content = function(file) {
ggplot2::ggsave(file, plot = balancePlot(), width = 4, height = 4, dpi = 400)
})
output$downloadBalancePlotPdf <- downloadHandler(filename = "Balance.pdf",
contentType = "application/pdf",
content = function(file) {
ggplot2::ggsave(file = file, plot = balancePlot(), width = 4, height = 4)
})
output$balancePlotCaption <- renderUI({
bal <- balance()
if (is.null(bal) || nrow(bal) == 0) {
return(NULL)
} else {
row <- selectedRow()
text <- "<strong>Figure 3.</strong> Covariate balance before and after propensity score adjustment. Each dot represents
the standardizes difference of means for a single covariate before and after propensity score adjustment on the propensity
score. Move the mouse arrow over a dot for more details."
return(HTML(sprintf(text)))
}
})
output$hoverInfoBalanceScatter <- renderUI({
bal <- balance()
if (is.null(bal) || nrow(bal) == 0) {
return(NULL)
} else {
row <- selectedRow()
hover <- input$plotHoverBalanceScatter
point <- nearPoints(bal, hover, threshold = 5, maxpoints = 1, addDist = TRUE)
if (nrow(point) == 0) {
return(NULL)
}
left_pct <- (hover$x - hover$domain$left) / (hover$domain$right - hover$domain$left)
top_pct <- (hover$domain$top - hover$y) / (hover$domain$top - hover$domain$bottom)
left_px <- hover$range$left + left_pct * (hover$range$right - hover$range$left)
top_px <- hover$range$top + top_pct * (hover$range$bottom - hover$range$top)
style <- paste0("position:absolute; z-index:100; background-color: rgba(245, 245, 245, 0.85); ",
"left:",
left_px - 251,
"px; top:",
top_px - 150,
"px; width:500px;")
beforeMatchingStdDiff <- formatC(point$beforeMatchingStdDiff, digits = 2, format = "f")
afterMatchingStdDiff <- formatC(point$afterMatchingStdDiff, digits = 2, format = "f")
div(
style = "position: relative; width: 0; height: 0",
wellPanel(
style = style,
p(HTML(paste0("<b> Covariate: </b>", point$covariateName, "<br/>",
"<b> Std. diff before ",tolower(row$psStrategy),": </b>", beforeMatchingStdDiff, "<br/>",
"<b> Std. diff after ",tolower(row$psStrategy),": </b>", afterMatchingStdDiff)))
)
)
}
})
balanceSummaryPlot <- reactive({
row <- selectedRow()
if (is.null(row) || !(row$databaseId %in% metaAnalysisDbIds)) {
return(NULL)
} else {
balanceSummary <- getCovariateBalanceSummary(connection = connection,
targetId = row$targetId,
comparatorId = row$comparatorId,
analysisId = row$analysisId,
beforeLabel = paste("Before", row$psStrategy),
afterLabel = paste("After", row$psStrategy))
plot <- plotCovariateBalanceSummary(balanceSummary,
threshold = 0.1,
beforeLabel = paste("Before", row$psStrategy),
afterLabel = paste("After", row$psStrategy))
return(plot)
}
})
output$balanceSummaryPlot <- renderPlot({
balanceSummaryPlot()
}, res = 100)
output$balanceSummaryPlotCaption <- renderUI({
row <- selectedRow()
if (is.null(row)) {
return(NULL)
} else {
text <- "<strong>Figure 7.</strong> Covariate balance before and after %s. The y axis represents
the standardized difference of mean before and after %s on the propensity
score. The whiskers show the minimum and maximum values across covariates. The box represents the
interquartile range, and the middle line represents the median. The dashed lines indicate a standardized
difference of 0.1."
return(HTML(sprintf(text, row$psStrategy, row$psStrategy)))
}
})
output$downloadBalanceSummaryPlotPng <- downloadHandler(filename = "BalanceSummary.png",
contentType = "image/png",
content = function(file) {
ggplot2::ggsave(file, plot = balanceSummaryPlot(), width = 12, height = 5.5, dpi = 400)
})
output$downloadBalanceSummaryPlotPdf <- downloadHandler(filename = "BalanceSummary.pdf",
contentType = "application/pdf",
content = function(file) {
ggplot2::ggsave(file = file, plot = balanceSummaryPlot(), width = 12, height = 5.5)
})
systematicErrorPlot <- reactive({
row <- selectedRow()
if (is.null(row)) {
return(NULL)
} else {
targetId <- exposureOfInterest$exposureId[exposureOfInterest$exposureName == input$target]
comparatorId <- exposureOfInterest$exposureId[exposureOfInterest$exposureName == input$comparator]
controlResults <- getControlResults(connection = connection,
targetId = targetId,
comparatorId = comparatorId,
analysisId = row$analysisId,
databaseId = row$databaseId)
plot <- plotScatter(controlResults)
return(plot)
}
})
output$systematicErrorPlot <- renderPlot({
return(systematicErrorPlot())
})
output$downloadSystematicErrorPlotPng <- downloadHandler(filename = "SystematicError.png",
contentType = "image/png",
content = function(file) {
ggplot2::ggsave(file, plot = systematicErrorPlot(), width = 12, height = 5.5, dpi = 400)
})
output$downloadSystematicErrorPlotPdf <- downloadHandler(filename = "SystematicError.pdf",
contentType = "application/pdf",
content = function(file) {
ggplot2::ggsave(file = file, plot = systematicErrorPlot(), width = 12, height = 5.5)
})
systematicErrorSummaryPlot <- reactive({
row <- selectedRow()
if (is.null(row) || !(row$databaseId %in% metaAnalysisDbIds)) {
return(NULL)
} else {
negativeControls <- getNegativeControlEstimates(connection = connection,
targetId = row$targetId,
comparatorId = row$comparatorId,
analysisId = row$analysisId)
if (is.null(negativeControls))
return(NULL)
plot <- plotEmpiricalNulls(negativeControls)
return(plot)
}
})
output$systematicErrorSummaryPlot <- renderPlot({
return(systematicErrorSummaryPlot())
}, res = 100)
output$downloadSystematicErrorSummaryPlotPng <- downloadHandler(filename = "SystematicErrorSummary.png",
contentType = "image/png",
content = function(file) {
ggplot2::ggsave(file, plot = systematicErrorSummaryPlot(), width = 12, height = 5.5, dpi = 400)
})
output$downloadSystematicErrorSummaryPlotPdf <- downloadHandler(filename = "SystematicErrorSummary.pdf",
contentType = "application/pdf",
content = function(file) {
ggplot2::ggsave(file = file, plot = systematicErrorSummaryPlot(), width = 12, height = 5.5)
})
kaplanMeierPlot <- reactive({
row <- selectedRow()
if (is.null(row)) {
return(NULL)
} else {
targetId <- exposureOfInterest$exposureId[exposureOfInterest$exposureName == input$target]
comparatorId <- exposureOfInterest$exposureId[exposureOfInterest$exposureName == input$comparator]
outcomeId <- outcomeOfInterest$outcomeId[outcomeOfInterest$outcomeName == input$outcome]
km <- getKaplanMeier(connection = connection,
targetId = targetId,
comparatorId = comparatorId,
outcomeId = outcomeId,
databaseId = row$databaseId,
analysisId = row$analysisId)
plot <- plotKaplanMeier(kaplanMeier = km,
targetName = input$target,
comparatorName = input$comparator)
return(plot)
}
})
output$kaplanMeierPlot <- renderPlot({
return(kaplanMeierPlot())
}, res = 100)
output$downloadKaplanMeierPlotPng <- downloadHandler(filename = "KaplanMeier.png",
contentType = "image/png",
content = function(file) {
ggplot2::ggsave(file, plot = kaplanMeierPlot(), width = 7, height = 5, dpi = 400)
})
output$downloadKaplanMeierPlotPdf <- downloadHandler(filename = "KaplanMeier.pdf",
contentType = "application/pdf",
content = function(file) {
ggplot2::ggsave(file = file, plot = kaplanMeierPlot(), width = 7, height = 5)
})
output$kaplanMeierPlotPlotCaption <- renderUI({
row <- selectedRow()
if (is.null(row)) {
return(NULL)
} else {
text <- "<strong>Figure 5.</strong> Kaplan Meier plot, showing survival as a function of time. This plot
is adjusted using the propensity score: The target curve (<em>%s</em>) shows the actual observed survival. The
comparator curve (<em>%s</em>) applies reweighting to approximate the counterfactual of what the target survival
would look like had the target cohort been exposed to the comparator instead. The shaded area denotes
the 95 percent confidence interval."
return(HTML(sprintf(text, input$target, input$comparator)))
}
})
forestPlot <- reactive({
row <- selectedRow()
if (is.null(row) || !(row$databaseId %in% metaAnalysisDbIds)) {
return(NULL)
} else {
results <- getMainResults(connection = connection,
targetIds = row$targetId,
comparatorIds = row$comparatorId,
outcomeIds = row$outcomeId,
analysisIds = row$analysisId)
plot <- plotForest(results)
return(plot)
}
})
output$forestPlot <- renderPlot({
forestPlot()
})
output$forestPlotCaption <- renderUI({
row <- selectedRow()
if (is.null(row)) {
return(NULL)
} else {
text <- "<strong>Figure 6.</strong> Forest plot showing the per-database and summary hazard ratios (and 95 percent confidence
intervals) comparing %s to %s for the outcome of %s, using %s. Estimates are shown both before and after empirical
calibration. The I2 is computed on the uncalibrated estimates."
return(HTML(sprintf(text, input$target, input$comparator, input$outcome, row$psStrategy)))
}
})
output$downloadForestPlotPng <- downloadHandler(filename = "ForestPlot.png",
contentType = "image/png",
content = function(file) {
ggplot2::ggsave(file, plot = forestPlot(), width = 12, height = 9, dpi = 400)
})
output$downloadForestPlotPdf <- downloadHandler(filename = "ForestPlot.pdf",
contentType = "application/pdf",
content = function(file) {
ggplot2::ggsave(file = file, plot = forestPlot(), width = 12, height = 9)
})
interactionEffects <- reactive({
row <- selectedRow()
if (is.null(row)) {
return(NULL)
} else {
targetId <- exposureOfInterest$exposureId[exposureOfInterest$exposureName == input$target]
comparatorId <- exposureOfInterest$exposureId[exposureOfInterest$exposureName == input$comparator]
outcomeId <- outcomeOfInterest$outcomeId[outcomeOfInterest$outcomeName == input$outcome]
subgroupResults <- getSubgroupResults(connection = connection,
targetIds = targetId,
comparatorIds = comparatorId,
outcomeIds = outcomeId,
databaseIds = row$databaseId,
analysisIds = row$analysisId)
if (nrow(subgroupResults) == 0) {
return(NULL)
} else {
if (blind) {
subgroupResults$rrr <- rep(NA, nrow(subgroupResults))
subgroupResults$ci95Lb <- rep(NA, nrow(subgroupResults))
subgroupResults$ci95Ub <- rep(NA, nrow(subgroupResults))
subgroupResults$logRrr <- rep(NA, nrow(subgroupResults))
subgroupResults$seLogRrr <- rep(NA, nrow(subgroupResults))
subgroupResults$p <- rep(NA, nrow(subgroupResults))
subgroupResults$calibratedP <- rep(NA, nrow(subgroupResults))
}
return(subgroupResults)
}
}
})
output$subgroupTableCaption <- renderUI({
row <- selectedRow()
if (is.null(row)) {
return(NULL)
} else {
text <- "<strong>Table 4.</strong> Subgroup interactions. For each subgroup, the number of subject within the subroup
in the target (<em>%s</em>) and comparator (<em>%s</em>) cohorts are provided, as well as the hazard ratio ratio (HRR)
with 95 percent confidence interval and p-value (uncalibrated and calibrated) for interaction of the main effect with
the subgroup."
return(HTML(sprintf(text, input$target, input$comparator)))
}
})
output$subgroupTable <- renderDataTable({
row <- selectedRow()
if (is.null(row)) {
return(NULL)
} else {
subgroupResults <- interactionEffects()
if (is.null(subgroupResults)) {
return(NULL)
}
subgroupTable <- prepareSubgroupTable(subgroupResults, output = "html")
colnames(subgroupTable) <- c("Subgroup",
"Target subjects",
"Comparator subjects",
"HRR",
"P",
"Cal.P")
options <- list(searching = FALSE,
ordering = FALSE,
paging = FALSE,
bInfo = FALSE)
subgroupTable <- datatable(subgroupTable,
options = options,
rownames = FALSE,
escape = FALSE,
class = "stripe nowrap compact")
return(subgroupTable)
}
})
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.