# Halotime model with normal distribution of base salt concentration
# 9/1/2024
HaloTnorm.fun <- function(time, SConc, ThetaHalo, SConcb50, sigmaSConcb){
pnorm((SConc + (ThetaHalo/time) - SConcb50)/sigmaSConcb, lower.tail = F) }
"HaloTnorm" <- function(){
fct <- function(x, parm){
HaloTnorm.fun(x[,1], x[,2], parm[,1], parm[,2], parm[,3]) }
names <- c("ThetaHalo", "SConcb50", "sigmaSConcb")
name <- "HaloTnorm"
text <- "Halotime model with normal distribution of SConcb"
ss <- function(data){
x1 <- data[, 1]
x2 <- data[, 2]
y <- data[, 3]
pseudoY <- qnorm((y+10e-6)*0.99, lower.tail = F)
mod <- lm(pseudoY ~ I(1/x1) + x2)
sigmaSConcb <- 1/coef(mod)[3]
SConcb50 <- -coef(mod)[1]*sigmaSConcb
ThetaHalo <- coef(mod)[2]*sigmaSConcb
return(c(ThetaHalo, SConcb50, sigmaSConcb))
}
GR <- function(parms, respl, reference="control", type="relative", SConc){
# print(respl)
HaloTnorm.gra <- function(p1, p2, p3, SConc, g) {
# parameters: ThetaHalo, SConcb50, sigmaSConcb
GR <- (p3 * qnorm(g, lower.tail = F) - SConc + p2 ) / p1 #returns rate
GR <- ifelse(GR > 0, GR, 0)
1/GR # returns time
}
p1 <- as.numeric(parms[1])
p2 <- as.numeric(parms[2])
p3 <- as.numeric(parms[3])
g <- respl
if(type=="absolute"){
EDp <- HaloTnorm.gra(p1, p2, p3, SConc, g)
#Approximation of derivatives(finite differences)
d1.1 <- HaloTnorm.gra(p1, p2, p3, SConc, g)
d1.2 <- HaloTnorm.gra(p1 + 10e-6, p2, p3, SConc, g)
d1 <- (d1.2 - d1.1)/10e-6
d2.1 <- HaloTnorm.gra(p1, p2, p3, SConc, g)
d2.2 <- HaloTnorm.gra(p1, p2 + 10e-6, p3, SConc, g)
d2 <- (d2.2 - d2.1)/10e-6
d3.1 <- HaloTnorm.gra(p1, p2, p3, SConc, g)
d3.2 <- HaloTnorm.gra(p1, p2, p3 + 10e-6, SConc, g)
d3 <- (d3.2 - d3.1)/10e-6
EDder <- c(d1, d2, d3)
} else{ if(type=="relative") {
.Pmax <- pnorm((SConc - p2 )/p3, lower.tail = FALSE)
grel <- .Pmax*g
EDp <- HaloTnorm.gra(p1, p2, p3, SConc, grel)
#Approximation of derivatives(finite differences)
d1.1 <- HaloTnorm.gra(p1, p2, p3, SConc, grel)
d1.2 <- HaloTnorm.gra(p1 + 10e-6, p2, p3, SConc, grel)
d1 <- (d1.2 - d1.1)/10e-6
d2.1 <- HaloTnorm.gra(p1, p2, p3, SConc, grel)
d2.2 <- HaloTnorm.gra(p1, p2 + 10e-6, p3, SConc, grel)
d2 <- (d2.2 - d2.1)/10e-6
d3.1 <- HaloTnorm.gra(p1, p2, p3, SConc, grel)
d3.2 <- HaloTnorm.gra(p1, p2, p3 + 10e-6, SConc, grel)
d3 <- (d3.2 - d3.1)/10e-6
EDder <- c(d1, d2, d3)
} }
return(list(EDp, EDder))
}
deriv1 <- function(x, parm){
#Approximation by using finite differences
d1.1 <- HaloTnorm.fun(x[,1], x[,2], parm[,1], parm[,2], parm[,3])
d1.2 <- HaloTnorm.fun(x[,1], x[,2], (parm[,1] + 10e-6), parm[,2], parm[,3])
d1 <- (d1.2 - d1.1)/10e-6
d2.1 <- HaloTnorm.fun(x[,1], x[,2], parm[,1], parm[,2], parm[,3])
d2.2 <- HaloTnorm.fun(x[,1], x[,2], parm[,1], (parm[,2] + 10e-6), parm[,3])
d2 <- (d2.2 - d2.1)/10e-6
d3.1 <- HaloTnorm.fun(x[,1], x[,2], parm[,1], parm[,2], parm[,3])
d3.2 <- HaloTnorm.fun(x[,1], x[,2], parm[,1], parm[,2], (parm[,3] + 10e-6))
d3 <- (d3.2 - d3.1)/10e-6
cbind(d1, d2, d3)
}
returnList <- list(fct=fct, ssfct=ss, name = name,
names=names, text=text, edfct=GR,
deriv1=deriv1)
class(returnList) <- "drcMean"
invisible(returnList)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.