#' Normalise and scale counts matrix
#'
#' This function is called by the \code{preprocess} function and performs
#' log-normalisation and scaling of a counts matrix.
#'
#' @param x a matrix of counts
#' @param lib.size the library size
#' @param log logical, indicates whether the output should be on the log2 scale
#' or counts scale. Default is TRUE.
#' @param prior.count The prior count to add if the data is log2 normalised.
#' Default is a small count of 0.5.
#'
#' @return a dataframe of log-normalised and scaled counts
#'
#' @export normSca
#'
#' @examples
#'
#' y <- matrix(rnbinom(1000, size=2, mu= 20),ncol=10)
#' colnames(y)<- paste("Cell",1:10, sep="")
#' row.names(y)<-paste("Gene",1:100,sep="")
#' norm.data <- normSca(y,lib.size=colSums(y))
#'
#' #Visualise the counts vs scaled data
#' boxplot(y)
#' boxplot(norm.data)
#'
normSca<-function(x, lib.size=lib.size, log = TRUE, prior.count = 0.5)
# Normalise and scale counts matrix
# Xinyi Jin and Belinda Phipson
# 17 February 2021
# Modified 17 February 2021
{
x <- as.matrix(x)
# log normalise
normalisedVal<- normCounts(x, log = log, prior.count = prior.count,
lib.size=lib.size)
# scale
#scaledVal<-t(scale(t(normalisedVal)))
#scaledVal
normalisedVal
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.