ZIPLNfit_sparse | R Documentation |
An R6 Class to represent a ZIPLNfit in a standard, general framework, with sparse inverse residual covariance
An R6 Class to represent a ZIPLNfit in a standard, general framework, with sparse inverse residual covariance
PLNmodels::ZIPLNfit
-> ZIPLNfit_sparse
penalty
the global level of sparsity in the current model
penalty_weights
a matrix of weights controlling the amount of penalty element-wise.
n_edges
number of edges if the network (non null coefficient of the sparse precision matrix)
nb_param_pln
number of parameters in the PLN part of the current model
vcov_model
character: the model used for the residual covariance
pen_loglik
variational lower bound of the l1-penalized loglikelihood
EBIC
variational lower bound of the EBIC
density
proportion of non-null edges in the network
criteria
a vector with loglik, penalized loglik, BIC, EBIC, ICL, R_squared, number of parameters, number of edges and graph density
new()
Initialize a ZIPLNfit_fixed
model
ZIPLNfit_sparse$new(data, control)
data
a named list used internally to carry the data matrices
control
a list for controlling the optimization. See details.
latent_network()
Extract interaction network in the latent space
ZIPLNfit_sparse$latent_network(type = c("partial_cor", "support", "precision"))
type
edge value in the network. Can be "support" (binary edges), "precision" (coefficient of the precision matrix) or "partial_cor" (partial correlation between species)
a square matrix of size ZIPLNfit_sparse$n
plot_network()
plot the latent network.
ZIPLNfit_sparse$plot_network( type = c("partial_cor", "support"), output = c("igraph", "corrplot"), edge.color = c("#F8766D", "#00BFC4"), remove.isolated = FALSE, node.labels = NULL, layout = layout_in_circle, plot = TRUE )
type
edge value in the network. Either "precision" (coefficient of the precision matrix) or "partial_cor" (partial correlation between species).
output
Output type. Either igraph
(for the network) or corrplot
(for the adjacency matrix)
edge.color
Length 2 color vector. Color for positive/negative edges. Default is c("#F8766D", "#00BFC4")
. Only relevant for igraph output.
remove.isolated
if TRUE
, isolated node are remove before plotting. Only relevant for igraph output.
node.labels
vector of character. The labels of the nodes. The default will use the column names ot the response matrix.
layout
an optional igraph layout. Only relevant for igraph output.
plot
logical. Should the final network be displayed or only sent back to the user. Default is TRUE
.
clone()
The objects of this class are cloneable with this method.
ZIPLNfit_sparse$clone(deep = FALSE)
deep
Whether to make a deep clone.
## Not run:
# See other examples in function ZIPLN
data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPLN <- ZIPLN(Abundance ~ 1, data = trichoptera, control= ZIPLN_param(penalty = 1))
class(myPLN)
print(myPLN)
plot(myPLN)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.