library(amlresistancenetworks)
library(dplyr)
library(RCy3)
gilt.data<-readRDS(system.file('gilteritinibData.Rds',package='amlresistancenetworks'))
gilt.pdat<-readRDS(system.file('giltPhosphoData.Rds',package='amlresistancenetworks'))
##first, test out combining bulk and regular proteomics
createCombinedGraph<-function(bulk.data,
phospho.data,control='None',
condition=c('Early Gilteritinib','Late Gilteritinib'),
cellLine='',
pvalThresh=0.01,prefix=''){
total.mean.diffs<-amlresistancenetworks::computeFoldChangePvals(subset(bulk.data,cellLine==cellLine),
control,condition)
phospho.mean.diffs<-amlresistancenetworks::computeFoldChangePvals(subset(phospho.data,cellLine==cellLine),
control,condition)
all.nets=purrr::map(condition,function(cond){
diff.res<-total.mean.diffs%>%
ungroup()%>%
subset(Condition==cond)%>%
dplyr::select(Gene,value=condition_to_control,p_adj,Condition)
diff.phos<-phospho.mean.diffs%>%
ungroup()%>%
subset(Condition==cond)%>%
dplyr::select(Gene,value=condition_to_control,p_adj,Condition)
overlapping<-intersect(unlist(subset(diff.phos,p_adj<pvalThresh)%>%dplyr::select(Gene)),unlist(subset(diff.res,p_adj<pvalThresh)%>%dplyr::select(Gene)))
print(overlapping)
print(paste('removing',length(overlapping),'genes in both phospho and bulk data'))
sig.res<-diff.res%>%
subset(p_adj<pvalThresh)%>%
subset(!Gene%in%overlapping)
sig.phos<-diff.phos%>%
subset(p_adj<pvalThresh)%>%
subset(!Gene%in%overlapping)
lig.network<-computeProteinNetwork(sig.vals=rbind(sig.res,sig.phos),
all.vals=diff.res,phos.vals=diff.phos,nrand=100)
#RCy3::createNetworkFromIgraph(lig.network,title=paste(prefix,cellLine,
# gsub(' ','',control),'vs',gsub(' ','',cond),sep='_'))
return(lig.network)
})
return(all.nets)
}
o.res<-createCombinedGraph(bulk.data=gilt.data,phospho.data=gilt.pdat,prefix='combined',pvalThresh = 0.01,cellLine='MOLM14')
v.res<-createCombinedGraph(bulk.data=gilt.data,phospho.data=gilt.pdat,prefix='combined',pvalThresh = 0.01,cellLine='MV411')
##test out multinetwork approach
createMultiGraph<-function(data,control='None',
condition=c('Early Gilteritinib','Late Gilteritinib'),
cellLine=''){
total.mean.diffs<-amlresistancenetworks::computeFoldChangePvals(subset(data,cellLine==cellLine),
control,condition)
##iterate over all conditions
all.nets=purrr::map(condition,function(cond){
diff.res<-total.mean.diffs%>%
ungroup()%>%
subset(Condition==cond)%>%
dplyr::select(Gene,value=condition_to_control,p_adj,Condition)
lig.network<-computeProteinNetwork(sig.vals=subset(diff.res,p_adj<0.05),
all.vals=diff.res,nrand=1000)
return(lig.network)
})
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.