test_that("multiplication works", {
expect_equal(2 * 2, 4)
})
##create gene by sample by protein table
test_that('multi-data regression', {
library(dplyr)
# dat<-load('testData')
tr.samps<-unique(testData$mol.data$Sample)[1:40]
te.samps<-setdiff(testData$mol.data$Sample,tr.samps)
auc.dat<-testData$auc.data
drugs<-unique(auc.dat$Condition)[1:5]
tr.dat<-subset(testData$mol.data,Sample%in%tr.samps)
te.dat<-subset(testData$mol.data,Sample%in%te.samps)
auc.dat<-auc.dat%>%
rename(AUC='Value')%>%
subset(Condition%in%drugs)
##now train model on AML and eval on depmap data
#eval.list<-list(transcriptCounts='Gene',LogFoldChange='Gene',numMuts='Gene')
eval.list<-list(list(mf=c('Gene','Gene','Gene'),fn=c('transcriptCounts','LogFoldChange','numMuts')))
##now train model on AML and eval on depmap data
reg.preds<-purrr::map_df(eval.list,
~ amlresistancenetworks::drugMolRegressionEval(rename(auc.dat,`AML sample`='Sample'),
rename(tr.dat,`AML sample`='Sample'),
mol.feature=.x[1],
mol.feature.name=.x[2],
auc.dat,
te.dat,
category='Condition'))
expect_equal(dim(reg.preds),c(5,8))
})
test_that('multi-data logistic regression', {
library(dplyr)
# dat<-load('testData')
tr.samps<-unique(testData$mol.data$Sample)[1:40]
te.samps<-setdiff(testData$mol.data$Sample,tr.samps)
auc.dat<-testData$auc.data
drugs<-unique(auc.dat$Condition)[1:5]
tr.dat<-subset(testData$mol.data,Sample%in%tr.samps)
te.dat<-subset(testData$mol.data,Sample%in%te.samps)
auc.dat<-auc.dat%>%
rename(AUC='Value')%>%
subset(Condition%in%drugs)
##now train model on AML and eval on depmap data
#eval.list<-list(transcriptCounts='Gene',LogFoldChange='Gene',numMuts='Gene')
eval.list<-list(list(mf=c('Gene','Gene','Gene'),fn=c('transcriptCounts','LogFoldChange','numMuts')))
##now train model on AML and eval on depmap data
reg.preds<-purrr::map_df(eval.list,
~ amlresistancenetworks::drugMolLogRegEval(rename(auc.dat,`AML sample`='Sample'),
rename(tr.dat,`AML sample`='Sample'),
mol.feature=.x[1],
mol.feature.name=.x[2],
auc.dat,
te.dat,
category='Condition',aucThresh=0.5))
expect_equal(dim(reg.preds),c(5,8))
})
test_that('regression', {
library(dplyr)
# dat<-load('testData')
tr.samps<-unique(testData$mol.data$Sample)[1:40]
te.samps<-setdiff(testData$mol.data$Sample,tr.samps)
auc.dat<-testData$auc.data
drugs<-unique(auc.dat$Condition)[1:5]
tr.dat<-subset(testData$mol.data,Sample%in%tr.samps)
te.dat<-subset(testData$mol.data,Sample%in%te.samps)
auc.dat<-auc.dat%>%
rename(AUC='Value')%>%
subset(Condition%in%drugs)
##now train model on AML and eval on depmap data
eval.list<-list(c('Gene','transcriptCounts'),c('Gene','LogFoldChange'),c('Gene','numMuts'))
##now train model on AML and eval on depmap data
reg.preds<-purrr::map_df(eval.list,
~ amlresistancenetworks::drugMolRegressionEval(rename(auc.dat,`AML sample`='Sample'),
rename(tr.dat,`AML sample`='Sample'),
mol.feature=.x[1],
mol.feature.name=.x[2],
auc.dat,
te.dat,
category='Condition'))
expect_equal(dim(reg.preds),c(15,8))
})
test_that('logistic regression',{
library(dplyr)
# dat<-load('testData')
tr.samps<-unique(testData$mol.data$Sample)[1:40]
te.samps<-setdiff(testData$mol.data$Sample,tr.samps)
auc.dat<-testData$auc.data
drugs<-unique(auc.dat$Condition)[1:5]
tr.dat<-subset(testData$mol.data,Sample%in%tr.samps)
te.dat<-subset(testData$mol.data,Sample%in%te.samps)
auc.dat<-auc.dat%>%
rename(AUC='Value')%>%
subset(Condition%in%drugs)
eval.list<-list(c('Gene','transcriptCounts'),c('Gene','LogFoldChange'),c('Gene','numMuts'))
##now train model on AML and eval on depmap data
reg.preds<-purrr::map_df(eval.list,
~ amlresistancenetworks::drugMolLogRegEval(rename(auc.dat,`AML sample`='Sample'),
rename(tr.dat,`AML sample`='Sample'),
mol.feature=.x[1],
mol.feature.name=.x[2],
auc.dat,
te.dat,
category='Condition',aucThresh=0.5))
expect_equal(dim(reg.preds),c(15,8))
})
test_that('elastic net regression',{
library(dplyr)
# dat<-load('testData')
tr.samps<-unique(testData$mol.data$Sample)[1:40]
te.samps<-setdiff(testData$mol.data$Sample,tr.samps)
auc.dat<-testData$auc.data
drugs<-unique(auc.dat$Condition)[1:5]
tr.dat<-subset(testData$mol.data,Sample%in%tr.samps)
te.dat<-subset(testData$mol.data,Sample%in%te.samps)
auc.dat<-auc.dat%>%
rename(AUC='Value')%>%
subset(Condition%in%drugs)
##now train model on AML and eval on depmap data
eval.list<-list(c('Gene','transcriptCounts'),c('Gene','LogFoldChange'),c('Gene','numMuts'))
##now train model on AML and eval on depmap data
reg.preds<-purrr::map_df(eval.list,
~ amlresistancenetworks::drugMolRegressionEval(rename(auc.dat,`AML sample`='Sample'),
rename(tr.dat,`AML sample`='Sample'),
mol.feature=.x[1],
mol.feature.name=.x[2],
auc.dat,
te.dat,
category='Condition',doEnet=TRUE))
expect_equal(dim(reg.preds),c(15,8))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.