Signalomes | R Documentation |
A function to generate signalomes
Signalomes(KSR, predMatrix, exprsMat, KOI, threskinaseNetwork=0.9,
signalomeCutoff=0.5, module_res = NULL, filter = FALSE, verbose = TRUE)
KSR |
kinase-substrate relationship scoring results |
predMatrix |
output of kinaseSubstratePred function |
exprsMat |
a matrix with rows corresponding to phosphosites and columns corresponding to samples |
KOI |
a character vector that contains kinases of interest for which expanded signalomes will be generated |
threskinaseNetwork |
threshold used to select interconnected kinases for the expanded signalomes |
signalomeCutoff |
threshold used to filter kinase-substrate relationships |
module_res |
parameter to select number of final modules |
filter |
parameter to filter modules with only few proteins |
verbose |
Default to |
A list of 3 elements.
Signalomes
, proteinModules
and kinaseSubstrates
data('phospho_L6_ratio_pe')
data('SPSs')
data('PhosphoSitePlus')
grps = gsub('_.+', '', colnames(phospho.L6.ratio.pe))
# Construct a design matrix by condition
design = model.matrix(~ grps - 1)
# phosphoproteomics data normalisation using RUV
L6.sites = paste(sapply(GeneSymbol(phospho.L6.ratio.pe), function(x)paste(x)),
";",
sapply(Residue(phospho.L6.ratio.pe), function(x)paste(x)),
sapply(Site(phospho.L6.ratio.pe), function(x)paste(x)),
";", sep = "")
ctl = which(L6.sites %in% SPSs)
phospho.L6.ratio.RUV = RUVphospho(
SummarizedExperiment::assay(phospho.L6.ratio.pe, "Quantification"),
M = design, k = 3, ctl = ctl)
phosphoL6 = phospho.L6.ratio.RUV
# filter for up-regulated phosphosites
phosphoL6.mean <- meanAbundance(phosphoL6, grps = grps)
aov <- matANOVA(mat=phosphoL6, grps=grps)
phosphoL6.reg <- phosphoL6[(aov < 0.05) &
(rowSums(phosphoL6.mean > 0.5) > 0),, drop = FALSE]
L6.phos.std <- standardise(phosphoL6.reg)
idx <- match(rownames(L6.phos.std), rownames(phospho.L6.ratio.pe))
rownames(L6.phos.std) <- L6.sites[idx]
L6.phos.seq <- Sequence(phospho.L6.ratio.pe)[idx]
L6.matrices <- kinaseSubstrateScore(PhosphoSite.mouse, L6.phos.std,
L6.phos.seq, numMotif = 5, numSub = 1)
set.seed(1)
L6.predMat <- kinaseSubstratePred(L6.matrices, top=30)
kinaseOI = c('PRKAA1', 'AKT1')
Signalomes_results <- Signalomes(KSR=L6.matrices,
predMatrix=L6.predMat,
exprsMat=L6.phos.std,
KOI=kinaseOI)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.