View source: R/kinaseSubstratePrediction.R
kinaseSubstratePred | R Documentation |
A machine learning approach for predicting specific kinase for a given substrate. This prediction framework utilise adaptive sampling.
kinaseSubstratePred(
phosScoringMatrices,
ensembleSize = 10,
top = 50,
cs = 0.8,
inclusion = 20,
iter = 5,
verbose = TRUE
)
phosScoringMatrices |
An output of kinaseSubstrateScore. |
ensembleSize |
An ensemble size. |
top |
a number to select top kinase substrates. |
cs |
Score threshold. |
inclusion |
A minimal number of substrates required for a kinase to be selected. |
iter |
A number of iterations for adaSampling. |
verbose |
Default to |
Kinase prediction matrix
data('phospho_L6_ratio_pe')
data('SPSs')
data('PhosphoSitePlus')
ppe <- phospho.L6.ratio.pe
sites = paste(sapply(GeneSymbol(ppe), function(x)x),";",
sapply(Residue(ppe), function(x)x),
sapply(Site(ppe), function(x)x),
";", sep = "")
grps = gsub("_.+", "", colnames(ppe))
design = model.matrix(~ grps - 1)
ctl = which(sites %in% SPSs)
ppe = RUVphospho(ppe, M = design, k = 3, ctl = ctl)
phosphoL6 = SummarizedExperiment::assay(ppe, "normalised")
# filter for up-regulated phosphosites
phosphoL6.mean <- meanAbundance(phosphoL6, grps = grps)
aov <- matANOVA(mat=phosphoL6, grps = grps)
idx <- (aov < 0.05) & (rowSums(phosphoL6.mean > 0.5) > 0)
phosphoL6.reg <- phosphoL6[idx, ,drop = FALSE]
L6.phos.std <- standardise(phosphoL6.reg)
rownames(L6.phos.std) <- paste0(GeneSymbol(ppe), ";", Residue(ppe),
Site(ppe), ";")[idx]
L6.phos.seq <- Sequence(ppe)[idx]
L6.matrices <- kinaseSubstrateScore(PhosphoSite.mouse, L6.phos.std,
L6.phos.seq, numMotif = 5, numSub = 1)
set.seed(1)
L6.predMat <- kinaseSubstratePred(L6.matrices, top=30)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.