View source: R/kinaseSubstratePrediction.R
kinaseSubstrateHeatmap | R Documentation |
Kinase-substrate annotation prioritisation heatmap
kinaseSubstrateHeatmap(
phosScoringMatrices,
top = 3,
printPlot = NULL,
filePath = "./kinaseSubstrateHeatmap.pdf",
width = 10,
height = 10
)
phosScoringMatrices |
a matrix returned from kinaseSubstrateScore. |
top |
the number of top ranked phosphosites for each kinase to be included in the heatmap. Default is 1. |
printPlot |
indicate whether the plot should be saved as a PDF in the specified directory. Default is NULL, otherwise specify TRUE. |
filePath |
path name to save the plot as a PDF file. Default saves in the working directory. |
width |
width of PDF. |
height |
height of PDF. |
a pheatmap object.
data('phospho_L6_ratio_pe')
data('SPSs')
data('PhosphoSitePlus')
ppe <- phospho.L6.ratio.pe
sites = paste(sapply(GeneSymbol(ppe), function(x)x),";",
sapply(Residue(ppe), function(x)x),
sapply(Site(ppe), function(x)x),
";", sep = "")
grps = gsub("_.+", "", colnames(ppe))
design = model.matrix(~ grps - 1)
ctl = which(sites %in% SPSs)
ppe = RUVphospho(ppe, M = design, k = 3, ctl = ctl)
phosphoL6 = SummarizedExperiment::assay(ppe, "normalised")
# filter for up-regulated phosphosites
phosphoL6.mean <- meanAbundance(phosphoL6, grps = grps)
aov <- matANOVA(mat=phosphoL6, grps = grps)
idx <- (aov < 0.05) & (rowSums(phosphoL6.mean > 0.5) > 0)
phosphoL6.reg <- phosphoL6[idx, ,drop = FALSE]
L6.phos.std <- standardise(phosphoL6.reg)
rownames(L6.phos.std) <- paste0(GeneSymbol(ppe), ";", Residue(ppe),
Site(ppe), ";")[idx]
L6.phos.seq <- Sequence(ppe)[idx]
L6.matrices <- kinaseSubstrateScore(PhosphoSite.mouse, L6.phos.std,
L6.phos.seq, numMotif = 5, numSub = 1)
kinaseSubstrateHeatmap(L6.matrices)
kinaseSubstrateHeatmap(L6.matrices, printPlot=TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.