get_sample_names <- function(G) {
ret <- NULL
if(!is.null(V(G)$sample))
ret <- V(G)$sample
else {
s <- igraph::list.vertex.attributes(G)
s <- grep("@", s, value = T)
ret <- sapply(strsplit(s, "@"), function (x) {x[[2]]})
}
return(unique(ret))
}
get_graph_centering_transform <- function(x, y, svg.width, svg.height) {
padding <- 50
G.width <- max(x) - min(x)
G.height <- max(y) - min(y)
scaling <- max(c(G.width / (svg.width - (padding * 2)), G.height / (svg.height - (padding * 2))))
x <- x / scaling
y <- y / scaling
offset.y <- min(y) - padding
graph.x.center <- (min(x) + max(x)) / 2
offset.x <- graph.x.center - (svg.width / 2)
return(list(offset.x = offset.x, offset.y = offset.y, scaling = scaling))
}
get_summary_table <- function(sc.data, sel.graph, sel.nodes) {
G <- sc.data$graphs[[sel.graph]]
col.names <- get_numeric_vertex_attributes(sc.data)
tab <- igraph::get.data.frame(G, what = "vertices")
temp <-tab[tab$Label %in% sel.nodes,]
ret <- temp[, col.names]
ret <- rbind(ret, apply(ret, 2, median, na.rm = T))
popsize <- data.frame(Cells = temp$popsize, Percentage = temp$popsize / sum(tab$popsize[tab$type == "cluster"]))
popsize <- rbind(popsize, colSums(popsize))
ret <- cbind(popsize, ret)
ret <- data.frame(Label = c(temp$Label, "Summary"), ret)
ret$Percentage <- signif(ret$Percentage * 100, digits = 4)
return(ret)
}
export_clusters <- function(working.dir, sel.graph, sel.nodes) {
d <- gsub(".txt$", ".all_events.RData", sel.graph)
d <- file.path(working.dir, d)
d <- my_load(d)
clus <- as.numeric(gsub("c", "", sel.nodes))
d <- d[d$cellType %in% clus,]
f <- flowFrame(as.matrix(d))
p <- sprintf("scaffold_export_%s_", gsub(".fcs.clustered.txt", "", sel.graph))
outname <- tempfile(pattern = p, tmpdir = working.dir, fileext = ".fcs")
print(outname)
write.FCS(f, outname)
}
graph_to_json <- function(G, sel.edges = NULL) {
edges <- data.frame(igraph::get.edgelist(G, names = F) - 1)
colnames(edges) <- c("source", "target")
svg.width <- 1200
svg.height <- 800
svg.center <- c(svg.width / 2, svg.height / 2)
x <- V(G)$x
y <- V(G)$y
y <- -1 * y
x <- x + abs(min(x))
y <- y + abs(min(y))
num.landmarks <- sum(V(G)$type == "landmark")
trans <- NULL
if(!is.null(V(G)$type) && any(V(G)$type == "landmark"))
trans <- get_graph_centering_transform(x[V(G)$type == "landmark"], y[V(G)$type == "landmark"], svg.width, svg.height)
else
trans <- get_graph_centering_transform(x, y, svg.width, svg.height)
x <- (x / trans$scaling) - trans$offset.x
y <- (y / trans$scaling) - trans$offset.y
edges <- cbind(edges, x1 = x[edges[, "source"] + 1], x2 = x[edges[, "target"] + 1])
edges <- cbind(edges, y1 = y[edges[, "source"] + 1], y2 = y[edges[, "target"] + 1])
edges <- cbind(edges, id = 1:nrow(edges))
if(!is.null(sel.edges)) {
edges.df <- igraph::get.data.frame(G, what = "edges")
if(sel.edges == "Highest scoring")
edges <- edges[edges.df$highest_scoring == 1, ]
else if(sel.edges == "To landmark")
edges <- edges[edges.df$cluster_to_landmark == 1, ]
else if(sel.edges == "Inter cluster")
edges <- edges[edges.df$inter_cluster == 1, ]
}
nodes <- igraph::get.data.frame(G, what = c("vertices"))
nodes$x <- x
nodes$y <- y
nodes <- nodes[, c("x", "y", "Label", "popsize")]
if(!is.null(V(G)$type))
nodes$type <- V(G)$type
ret <- list(nodes = jsonlite::toJSON(nodes), edges = jsonlite::toJSON(edges))
return(ret)
}
graph_type <- function(G) {
if(any(grepl("@", igraph::list.vertex.attributes(G)))) {
return("pooled")
} else {
df <- igraph::get.data.frame(G, what = "vertices")
if(!is.null(df$type))
df <- df[df$type == "cluster",]
if(!is.null(df$sample) && length(unique(df$sample)) > 1)
return("multiple")
else
return("single")
}
}
get_vertex_attributes <- function(G) {
d <- igraph::get.data.frame(G, what = "vertices")
#Don't consider attributes which are only present in the landmarks
d <- d[d$type == "cluster",]
v <- names(d)
v <- v[grep("@", v, invert = T)]
exclude <- c("x", "y", "cellType", "type", "groups", "r", "g", "b", "size", "DNA1", "DNA2", "BC1", "BC2", "BC3", "BC4", "BC5", "BC6", "Time",
"Cell_length", "Event_length", "Cisplatin", "beadDist", "highest_scoring_edge")
return(v[!(v %in% exclude)])
}
get_numeric_vertex_attributes <- function(G) {
attrs <- get_vertex_attributes(G)
df <- igraph::get.data.frame(G, what = "vertices")
num <- sapply(attrs, function(x) {is.numeric(df[, x])})
return(attrs[num])
}
get_number_of_cells_per_landmark <- function(sc.data, sel.graph) {
G <- sc.data$graphs[[sel.graph]]
land <- V(G)[V(G)$type == "landmark"]$Label
ee <- igraph::get.edgelist(G)
ee <- ee[V(G)[V(G)$type == "cluster"]$highest_scoring_edge,]
vv <- V(G)[as.numeric(ee[,2])]
popsize <- V(G)[vv]$popsize
dd <- data.frame(Landmark = ee[,1], popsize)
dd <- ddply(dd, ~Landmark, function(x) {sum(x["popsize"])})
dd <- cbind(dd, Percentage = dd$V1 / sum(dd$V1))
names(dd) <- c("Landmark", "Cells", "Percentage")
dd$Percentage <- signif(dd$Percentage * 100, digits = 4)
return(dd)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.