# Package tests at the development stage
library(survival)
library(coxExtensions)
library(tidyverse)
library(trafo)
set.seed(1234)
survs <- sample(1:102, 500, replace = TRUE)
events <- as.double(sample(0:1, 500, replace = TRUE))
test_data <- tibble::tibble(surv_time = sort(survs),
event_var = events,
var1 = rnorm(500),
var2 = rnorm(500, 15, sd = 5),
var3 = factor(c(rep('A', 150),
rep('B', 200),
rep('C', 150)),
c('C', 'B', 'A')))
test_uni <- coxph(Surv(surv_time, event_var) ~ var1,
data = test_data,
x = TRUE)
test_model <- coxph(Surv(surv_time, event_var) ~ var1 + var2 + var3,
data = test_data,
x = TRUE)
test_obj <- coxex(test_model, test_data)
test_uni <- coxex(test_uni, data = test_data)
test_strata <- coxex(coxph(Surv(surv_time, event_var) ~ var3,
data = test_data,
x = TRUE),
data = test_data)
summary(test_uni)
print(test_obj)
nobs(test_obj)
model.frame(test_obj, type = 'surv')
get_cox_estimates(test_obj, trans_function = exp)
get_cox_qc(test_obj,
type.predict = 'survival',
type.residuals = 'martingale')
get_cox_qc_plots(test_obj,
type.predict = 'survival',
type.residuals = 'martingale')
get_cox_stats(test_obj)
get_cox_assumptions(test_obj)
predict(test_obj)
summary(test_obj, type = 'assumptions')
plot(test_obj, type = 'residuals')
plot_cox_fit(test_obj)
plot(test_obj,
type = 'fit',
conf.int = TRUE,
conf.int.alpha = 0.15)
predict(test_obj)
resid(test_obj)
summary(test_obj, 'fit')
test_cal <- calibrate(test_obj, n = 4, labels = paste0('Q', 1:4))
test_uni_cal <- get_cox_calibration(test_uni, n = 3)
test_cal_strata <- calibrate(test_strata,
use_unique = TRUE,
labels = levels(test_data$var3))
plot(test_cal_strata)
plot(test_cal, show_cox = FALSE)
plot(test_uni_cal)
summary(test_cal, 'strata')
summary(test_uni_cal, 'strata')
plot(test_obj, 'residuals')
test_pec <- get_cox_pec(cox_model = test_obj,
type = 'brier',
splitMethod = 'cv10')
test_brier <- surv_brier(test_obj,
splitMethod = 'BootCv')
dplyr::filter(test_brier, time < 50)
plot(dplyr::filter(test_brier, time < 50),
one_plot = TRUE,
show_reference = TRUE)
test_validation <- validate(fit = test_obj,
method = 'crossvalidation')
summary(test_obj, 'fit')
test_obj %>%
surv_brier %>%
plot
test_cal %>%
plot(type = 'squares',
error_stat = '2se',
point_size = 1,
palette = c('plum', 'orange'))
test_cal_strata %>%
plot(type = 'squares',
error_stat = '2se',
point_size = 1)
test_uni_cal %>%
plot(type = 'squares',
error_stat = '2se',
point_size = 1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.