# test regression training
test_that("Length of output rows equals input rows times classes", {
# run keras
test_keras_regression_training$results <- purrr::pmap(
cbind(test_keras_regression_training, .row = rownames(test_keras_regression_training)),
keras_regression, the_list = ready_keras_regression, master_grid = test_keras_regression_training)
# unnest results dataframe to row
keras_df_regression_training <- as.data.frame(tidyr::unnest(test_keras_regression_training, results))
expect_equal(nrow(keras_df_regression_training), nrow(test_keras_regression_training))
})
test_that("Breaks for wrong input list", {
expect_error(test_keras_regression_training$results <- purrr::pmap(
cbind(test_keras_regression_training, .row = rownames(test_keras_regression_training)),
keras_regression, the_list = oversampled_keras_regression,
master_grid = test_keras_regression_training))
})
test_that("Breaks for missing columns in master_grid", {
expect_error(test_keras_regression_training$results <- purrr::pmap(
cbind(test_keras_regression_training, .row = rownames(test_keras_regression_training)),
keras_regression, the_list = oversampled_keras_regression,
master_grid = test_keras_regression_training[, c(1:8)]))
})
# test regression prediction
test_that("Length of output rows equals input rows times classes", {
# run keras
test_keras_regression_prediction$results <- purrr::pmap(
cbind(test_keras_regression_prediction, .row = rownames(test_keras_regression_prediction)),
keras_regression, the_list = ready_keras_regression, master_grid = test_keras_regression_prediction)
# unnest results dataframe to row
keras_df_regression_prediction <- as.data.frame(tidyr::unnest(test_keras_regression_prediction, results))
expect_equal(nrow(keras_df_regression_prediction), nrow(test_keras_regression_prediction))
})
test_that("Breaks if k_fold > 1 for prediction", {
test_keras_regression_prediction$k_fold <- 2
# run keras
expect_error(purrr::pmap(
cbind(test_keras_regression_prediction, .row = rownames(test_keras_regression_prediction)),
keras_regression, the_list = ready_keras_regression, master_grid = test_keras_regression_prediction))
})
test_that("Breaks if current_k_fold > 1 for prediction", {
test_keras_regression_prediction$current_k_fold <- 2
# run keras
expect_error(purrr::pmap(
cbind(test_keras_regression_prediction, .row = rownames(test_keras_regression_prediction)),
keras_regression, the_list = ready_keras_regression, master_grid = test_keras_regression_prediction))
})
# test store regression
test_that("Breaks if training_data is not a matrix", {
empty_df <- data.frame()
expect_error(store_regression_results(hist, true_values = c(0,5,4,3,2,5),
predicted_values = c(0,5,4,3,2,5), training_data = empty_df))
})
test_that("Breaks if training_data is an empty matrix", {
empty_matrix <- matrix(, nrow = 0, ncol = 3)
expect_error(store_regression_results(hist, true_values = c(0,5,4,3,2,5),
predicted_values = c(0,5,4,3,2,5), training_data = empty_matrix))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.