GSEA.GeneRanking <- function(A, class.labels, gene.labels, nperm, permutation.type = 0, sigma.correction = "GeneCluster", fraction=1.0, replace=F, reverse.sign= F) {
# This function ranks the genes according to the signal to noise ratio for the actual phenotype and also random permutations and bootstrap
# subsamples of both the observed and random phenotypes. It uses matrix operations to implement the signal to noise calculation
# in stages and achieves fast execution speed. It supports two types of permutations: random (unbalanced) and balanced.
# It also supports subsampling and bootstrap by using masking and multiple-count variables. When "fraction" is set to 1 (default)
# the there is no subsampling or boostrapping and the matrix of observed signal to noise ratios will have the same value for
# all permutations. This is wasteful but allows to support all the multiple options with the same code. Notice that the second
# matrix for the null distribution will still have the values for the random permutations
# (null distribution). This mode (fraction = 1.0) is the defaults, the recommended one and the one used in the examples.
# It is also the one that has be tested more thoroughly. The resampling and boostrapping options are intersting to obtain
# smooth estimates of the observed distribution but its is left for the expert user who may want to perform some sanity
# checks before trusting the code.
#
# Inputs:
# A: Matrix of gene expression values (rows are genes, columns are samples)
# class.labels: Phenotype of class disticntion of interest. A vector of binary labels having first the 1's and then the 0's
# gene.labels: gene labels. Vector of probe ids or accession numbers for the rows of the expression matrix
# nperm: Number of random permutations/bootstraps to perform
# permutation.type: Permutation type: 0 = unbalanced, 1 = balanced. For experts only (default: 0)
# sigma.correction: Correction to the signal to noise ratio (Default = GeneCluster, a choice to support the way it was handled in a previous package)
# fraction: Subsampling fraction. Set to 1.0 (no resampling). For experts only (default: 1.0)
# replace: Resampling mode (replacement or not replacement). For experts only (default: F)
# reverse.sign: Reverse direction of gene list (default = F)
#
# Outputs:
# s2n.matrix: Matrix with random permuted or bootstraps signal to noise ratios (rows are genes, columns are permutations or bootstrap subsamplings
# obs.s2n.matrix: Matrix with observed signal to noise ratios (rows are genes, columns are boostraps subsamplings. If fraction is set to 1.0 then all the columns have the same values
# order.matrix: Matrix with the orderings that will sort the columns of the obs.s2n.matrix in decreasing s2n order
# obs.order.matrix: Matrix with the orderings that will sort the columns of the s2n.matrix in decreasing s2n order
#
# The Broad Institute
# SOFTWARE COPYRIGHT NOTICE AGREEMENT
# This software and its documentation are copyright 2003 by the
# Broad Institute/Massachusetts Institute of Technology.
# All rights are reserved.
#
# This software is supplied without any warranty or guaranteed support
# whatsoever. Neither the Broad Institute nor MIT can be responsible for
# its use, misuse, or functionality.
A <- A + 0.00000001
N <- length(A[,1])
Ns <- length(A[1,])
subset.mask <- matrix(0, nrow=Ns, ncol=nperm)
reshuffled.class.labels1 <- matrix(0, nrow=Ns, ncol=nperm)
reshuffled.class.labels2 <- matrix(0, nrow=Ns, ncol=nperm)
class.labels1 <- matrix(0, nrow=Ns, ncol=nperm)
class.labels2 <- matrix(0, nrow=Ns, ncol=nperm)
order.matrix <- matrix(0, nrow = N, ncol = nperm)
obs.order.matrix <- matrix(0, nrow = N, ncol = nperm)
s2n.matrix <- matrix(0, nrow = N, ncol = nperm)
obs.s2n.matrix <- matrix(0, nrow = N, ncol = nperm)
obs.gene.labels <- vector(length = N, mode="character")
obs.gene.descs <- vector(length = N, mode="character")
obs.gene.symbols <- vector(length = N, mode="character")
M1 <- matrix(0, nrow = N, ncol = nperm)
M2 <- matrix(0, nrow = N, ncol = nperm)
S1 <- matrix(0, nrow = N, ncol = nperm)
S2 <- matrix(0, nrow = N, ncol = nperm)
gc()
C <- split(class.labels, class.labels)
class1.size <- length(C[[1]])
class2.size <- length(C[[2]])
class1.index <- seq(1, class1.size, 1)
class2.index <- seq(class1.size + 1, class1.size + class2.size, 1)
for (r in 1:nperm) {
class1.subset <- sample(class1.index, size = ceiling(class1.size*fraction), replace = replace)
class2.subset <- sample(class2.index, size = ceiling(class2.size*fraction), replace = replace)
class1.subset.size <- length(class1.subset)
class2.subset.size <- length(class2.subset)
subset.class1 <- rep(0, class1.size)
for (i in 1:class1.size) {
if (is.element(class1.index[i], class1.subset)) {
subset.class1[i] <- 1
}
}
subset.class2 <- rep(0, class2.size)
for (i in 1:class2.size) {
if (is.element(class2.index[i], class2.subset)) {
subset.class2[i] <- 1
}
}
subset.mask[, r] <- as.numeric(c(subset.class1, subset.class2))
fraction.class1 <- class1.size/Ns
fraction.class2 <- class2.size/Ns
if (permutation.type == 0) { # random (unbalanced) permutation
full.subset <- c(class1.subset, class2.subset)
label1.subset <- sample(full.subset, size = Ns * fraction.class1)
reshuffled.class.labels1[, r] <- rep(0, Ns)
reshuffled.class.labels2[, r] <- rep(0, Ns)
class.labels1[, r] <- rep(0, Ns)
class.labels2[, r] <- rep(0, Ns)
for (i in 1:Ns) {
m1 <- sum(!is.na(match(label1.subset, i)))
m2 <- sum(!is.na(match(full.subset, i)))
reshuffled.class.labels1[i, r] <- m1
reshuffled.class.labels2[i, r] <- m2 - m1
if (i <= class1.size) {
class.labels1[i, r] <- m2
class.labels2[i, r] <- 0
} else {
class.labels1[i, r] <- 0
class.labels2[i, r] <- m2
}
}
} else if (permutation.type == 1) { # proportional (balanced) permutation
class1.label1.subset <- sample(class1.subset, size = ceiling(class1.subset.size*fraction.class1))
class2.label1.subset <- sample(class2.subset, size = floor(class2.subset.size*fraction.class1))
reshuffled.class.labels1[, r] <- rep(0, Ns)
reshuffled.class.labels2[, r] <- rep(0, Ns)
class.labels1[, r] <- rep(0, Ns)
class.labels2[, r] <- rep(0, Ns)
for (i in 1:Ns) {
if (i <= class1.size) {
m1 <- sum(!is.na(match(class1.label1.subset, i)))
m2 <- sum(!is.na(match(class1.subset, i)))
reshuffled.class.labels1[i, r] <- m1
reshuffled.class.labels2[i, r] <- m2 - m1
class.labels1[i, r] <- m2
class.labels2[i, r] <- 0
} else {
m1 <- sum(!is.na(match(class2.label1.subset, i)))
m2 <- sum(!is.na(match(class2.subset, i)))
reshuffled.class.labels1[i, r] <- m1
reshuffled.class.labels2[i, r] <- m2 - m1
class.labels1[i, r] <- 0
class.labels2[i, r] <- m2
}
}
}
}
# compute S2N for the random permutation matrix
P <- reshuffled.class.labels1 * subset.mask
n1 <- sum(P[,1])
M1 <- A %*% P
M1 <- M1/n1
gc()
A2 <- A*A
S1 <- A2 %*% P
S1 <- S1/n1 - M1*M1
S1 <- sqrt(abs((n1/(n1-1)) * S1))
gc()
P <- reshuffled.class.labels2 * subset.mask
n2 <- sum(P[,1])
M2 <- A %*% P
M2 <- M2/n2
gc()
A2 <- A*A
S2 <- A2 %*% P
S2 <- S2/n2 - M2*M2
S2 <- sqrt(abs((n2/(n2-1)) * S2))
rm(P)
rm(A2)
gc()
if (sigma.correction == "GeneCluster") { # small sigma "fix" as used in GeneCluster
S2 <- ifelse(0.2*abs(M2) < S2, S2, 0.2*abs(M2))
S2 <- ifelse(S2 == 0, 0.2, S2)
S1 <- ifelse(0.2*abs(M1) < S1, S1, 0.2*abs(M1))
S1 <- ifelse(S1 == 0, 0.2, S1)
gc()
}
M1 <- M1 - M2
rm(M2)
gc()
S1 <- S1 + S2
rm(S2)
gc()
s2n.matrix <- M1/S1
if (reverse.sign == TRUE) {
s2n.matrix <- - s2n.matrix
}
gc()
for (r in 1:nperm) {
order.matrix[, r] <- order(s2n.matrix[, r], decreasing=T)
}
# compute S2N for the "observed" permutation matrix
P <- class.labels1 * subset.mask
n1 <- sum(P[,1])
M1 <- A %*% P
M1 <- M1/n1
gc()
A2 <- A*A
S1 <- A2 %*% P
S1 <- S1/n1 - M1*M1
S1 <- sqrt(abs((n1/(n1-1)) * S1))
gc()
P <- class.labels2 * subset.mask
n2 <- sum(P[,1])
M2 <- A %*% P
M2 <- M2/n2
gc()
A2 <- A*A
S2 <- A2 %*% P
S2 <- S2/n2 - M2*M2
S2 <- sqrt(abs((n2/(n2-1)) * S2))
rm(P)
rm(A2)
gc()
if (sigma.correction == "GeneCluster") { # small sigma "fix" as used in GeneCluster
S2 <- ifelse(0.2*abs(M2) < S2, S2, 0.2*abs(M2))
S2 <- ifelse(S2 == 0, 0.2, S2)
S1 <- ifelse(0.2*abs(M1) < S1, S1, 0.2*abs(M1))
S1 <- ifelse(S1 == 0, 0.2, S1)
gc()
}
M1 <- M1 - M2
rm(M2)
gc()
S1 <- S1 + S2
rm(S2)
gc()
obs.s2n.matrix <- M1/S1
gc()
if (reverse.sign == TRUE) {
obs.s2n.matrix <- - obs.s2n.matrix
}
for (r in 1:nperm) {
obs.order.matrix[,r] <- order(obs.s2n.matrix[,r], decreasing=T)
}
return(list(s2n.matrix = s2n.matrix,
obs.s2n.matrix = obs.s2n.matrix,
order.matrix = order.matrix,
obs.order.matrix = obs.order.matrix))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.