Description Usage Arguments Value Examples
View source: R/Train_model_NMF.R
add_deconvolution_training_model_NMF
adds a new model
1 2 3 4 5 6 7 8 9 10 | add_deconvolution_training_model_NMF(
transcriptome_data,
model_name,
subtype_vector,
rank_estimate,
exclude_non_interpretable_NMF_components,
training_nr_marker_genes,
parallel_processes,
nrun
)
|
transcriptome_data |
Transcriptomic data to be used for training. Has to contain the cell subtypes to which the similarity will be calculated. Note that the row names have to contain the HGNC symbols and the column names the sample names. |
model_name |
Name of the model. |
subtype_vector |
Character vector containing the subtype
labels of the training data samples ( |
rank_estimate |
Rank of the NMF model. Will be set to amount of different subtypes defined in the subtype_vector if not specified manually. |
exclude_non_interpretable_NMF_components |
Boolean parameter that indicates whether trained NMF components that cannot clearly be associated with either an endocrine or acinar & ductal or hisc subtyp shall be excluded. Default value FALSE. |
training_nr_marker_genes |
Amount of genes to be utilized as marker genes for each cell type. Default value 100. |
parallel_processes |
Amount of parallel processes used for training. Warning, RAM utilization increases linearly. Default value 1. |
nrun |
Amount of times the NMF model will be trained. Default value 10. |
Stores a new model in the package directory
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | data(Lawlor) # Data from Lawlor et al.
data(meta_data)
# extract the training sample subtype labels
subtype_vector = as.character(meta_data$Subtype)
add_deconvolution_training_model_NMF(
transcriptome_data = Lawlor,
model_name = "my_model",
subtype_vector = subtype_vector,
rank_estimate = 0,
exclude_non_interpretable_NMF_components = FALSE,
training_nr_marker_genes = 100,
parallel_processes = 1,
nrun = 1
)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.