get_LD_UKB | R Documentation |
Download pre-computed LD matrices from
UK Biobank in 3Mb windows,
then subset to the region that overlaps with query_dat
.
LD was derived from a British, European-decent subpopulation
in the UK Biobank. LD was pre-computed and stored by the Alkes Price lab.
All data is aligned to the hg19 reference genome.
For further details, see the
PolyFun publication.
get_LD_UKB(
query_dat,
query_genome = "hg19",
locus_dir,
chrom = NULL,
min_pos = NULL,
force_new_LD = FALSE,
local_storage = NULL,
download_full_ld = FALSE,
download_method = "axel",
fillNA = 0,
nThread = 1,
return_matrix = TRUE,
as_sparse = TRUE,
conda_env = "echoR_mini",
remove_tmps = TRUE,
subset_common = TRUE,
verbose = TRUE
)
query_dat |
SNP-level summary statistics subset to query the LD panel with. |
query_genome |
Genome build of the |
locus_dir |
Storage directory to use. |
force_new_LD |
Force new LD subset. |
local_storage |
Path to folder with previously download LD npz files. |
download_method |
If "python" will import compressed numpy array directly into R using reticulate. Otherwise, will be passed to downloader to download the full 3Mb-window LD matrix first. |
fillNA |
Value to fill LD matrix NAs with. |
nThread |
Number of threads to parallelize over. |
as_sparse |
Convert the LD matrix to a sparse matrix. |
conda_env |
Conda environments to search in.
If |
remove_tmps |
Remove all intermediate files like vcf, npz, and plink files. |
subset_common |
Subset |
verbose |
Print messages. |
query_dat <- data.table::data.table(CHR=10,POS=c(135000001), SNP="rs1234")
locus_dir <- file.path(tempdir(), "locus_A")
LD_list <- echoLD:::get_LD_UKB(
query_dat = query_dat,
locus_dir = locus_dir)
Other LD:
check_population_1kg()
,
compute_LD()
,
filter_LD()
,
get_LD()
,
get_LD_1KG()
,
get_LD_1KG_download_vcf()
,
get_LD_matrix()
,
get_LD_vcf()
,
get_locus_vcf_folder()
,
ldlinkr_ldproxy_batch()
,
plot_LD()
,
popDat_1KGphase1
,
popDat_1KGphase3
,
rds_to_npz()
,
saveSparse()
,
save_LD_matrix()
,
snpstats_get_MAF()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.