prep_q19_current_fish_catch <- function(.data){
hhs_Q19 <- .data[,c("maa", "19_current_fish_catch")] %>%
dplyr::filter(`19_current_fish_catch` != "") %>%
droplevels()
Q19_summary <- proportion(hhs_Q19[[2]],
hhs_Q19[[1]],
3, type = "5")
Q19 <- Q19_summary %>% dplyr::filter(`MA name` != "Mean ± SE")
#Combine categories in 3 choices
Q19$Declined <- as.numeric(Q19$Declined.a.lot) + as.numeric(Q19$Declined.slightly)
Q19$Improved <- as.numeric(Q19$Improved.slightly) + as.numeric(Q19$Improved.heavily)
#Format table for Rmarkdown report
Q19_summary <-
rbind(Q19[, c("MA name",
"N",
"Declined",
"Stayed.the.same",
"Improved")],
`Mean ± SE` = c('',
sum(as.numeric(Q19$N)),
compute_summary_line(Q19$Declined, 1),
compute_summary_line(Q19$Stayed.the.same, 1),
compute_summary_line(Q19$Improved, 1)
))
colnames(Q19_summary) <-
c("MA name",
"N",
"Declined",
"Stayed the same",
"Improved")
#plot
Q19_summary_long <-
Q19_summary %>% tidyr::pivot_longer(
cols = c("Declined", "Stayed the same", "Improved"),
names_to = "key",
values_to = "Proportion (%)"
)
Q19_summary_long$key <-
factor(
Q19_summary_long$key,
levels = c("Declined", "Stayed the same", "Improved")
)
Q19 <- clean_plot_data(Q19_summary_long)
Q19
}
plot_q19_current_fish_catch <- function(.data, ...){
.data_plot <- prep_q19_current_fish_catch(.data)
p <- plot_horiz_bar(
.data_plot,
title = "Proportion of fishers who perceived that their catch \nremained stable or increased over the past 2 years",
facet_var = key
)
result <- list(
plot = p,
data = .data_plot
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.