prep_q22_catch_5yrs <- function(.data){
hhs_Q22 <-.data[,c("maa", "22_catch_5yrs")] %>%
dplyr::filter(`22_catch_5yrs` != '') %>%
rbind(c(NA,"Declines a lot"), c(NA,"Declines slightly"),
c(NA,"Stays the same"), c(NA,"Improves slightly"),
c(NA,"Improves heavily")) %>%
droplevels()
#proportion
Q22_summary <-
proportion(hhs_Q22[[2]],
hhs_Q22[[1]],
3,5)
#remove summary row
Q22_summary_bind <- Q22_summary %>%
dplyr::filter(`MA name` != "Mean ± SE") %>%
droplevels()
#Combine categories
Q22_summary_bind$Declines <-
as.numeric(Q22_summary_bind$Declines.a.lot) +
as.numeric(Q22_summary_bind$Declines.slightly)
Q22_summary_bind$Improves <-
as.numeric(Q22_summary_bind$Improves.slightly) +
as.numeric(Q22_summary_bind$Improves.heavily)
#Format table for Rmarkdown report
Q22_summary <-
rbind(
Q22_summary_bind[, c("MA name",
"N",
"Declines",
"Stays.the.same",
"Improves")],
`Mean ± SE` = c('',
sum(as.numeric(Q22_summary_bind$N)),
compute_summary_line(Q22_summary_bind$Declines, 1),
compute_summary_line(Q22_summary_bind$Stays.the.same, 1),
compute_summary_line(Q22_summary_bind$Improves), 1)
)
Q22_summary <- Q22_summary %>% dplyr::filter (`MA name` != "")
#rename colums
colnames(Q22_summary) <-
c("MA name",
"N",
"Decline (%)",
"Stay the same (%)",
"Improve (%)")
#pivot table
Q22_summary_long <-
Q22_summary %>% tidyr::pivot_longer(
cols = c("Decline (%)", "Stay the same (%)", "Improve (%)"),
names_to = "key",
values_to = "Proportion (%)"
)
Q22_summary_long$key <-
factor(
Q22_summary_long$key,
levels = c("Decline (%)", "Stay the same (%)", "Improve (%)")
)
Q22 <- clean_plot_data(Q22_summary_long)
Q22
}
plot_q22_catch_5yrs <- function(.data, ...){
.data_plot <- prep_q22_catch_5yrs(.data)
p <- plot_horiz_bar(
.data_plot,
title = "Proportion of fishers who perceived that their catch \nwill remain stable or increase over the next 5 years",
facet_var = key
)
result <- list(
plot = p,
data = .data_plot
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.