#' @title Multi Plot
#' @description Improved plot.lm() function for multiple regression
#' @details
#' \code{multi_plot} outputs five diagnostic plots assessing the validity
#' of a mulitple regression. These diagnostic plots include: a Residuals Versus Fitted plot,
#' a Normal Quantile-Quantile plot, a Scale-Location versus Residuals plot,
#' a Residuals versus Leverage plot, and a Residuals versus Order plot.
#' @param lm linear model
#' @param data data frame
#' @param time_var variable depicting order observations were collected
#' @param rvf_plot if \code{TRUE}, outputs Residuals versus Fitted plot
#' @param qq_plot if \code{TRUE}, outputs Normal Quantile-Quantile plot
#' @param scl_loc if \code{TRUE}, outputs Scale-Location plot
#' @param resvlev_plot If \code{TRUE}, outputs Residuals versus Leverage plot
#' @param rvo_plot If \code{TRUE}, outputs Residuals versus Order plot
#' @import ggplot2
#' @import broom
#' @import knitr
#' @export
#' @return NULL
#' @author Shane Ross <saross@@wesleyan.edu>
#' @examples
#' data(mtcars)
#' reg <- lm(mpg ~ wt + cyl + hp, data = mtcars)
#' multi_plot(regression, mtcars, rvf_plot = TRUE,
#' qq_plot = TRUE, scloc_plot = TRUE, resvlev_plot = TRUE)
NULL
multi_plot <- function(lm, data, time_var = NULL,
rvf_plot = TRUE, qq_plot = TRUE, scloc_plot = TRUE,
resvlev_plot = TRUE, rvo_plot = TRUE) {
time_var <- deparse(substitute(time_var))
if (rvf_plot == TRUE) {
rvf_plot <- function(lm) {
if (class(lm) != "lm") {
stop("lm must be a linear model")
}
a <- order(abs(lm[["residuals"]]), decreasing = TRUE)[1:5]
highest <- ifelse(lm[["residuals"]] %in% lm[["residuals"]][a], labels(lm[["residuals"]]), "")
p1<-ggplot(lm, aes(.fitted, .resid))+geom_jitter() +
stat_smooth(se = TRUE, method="loess", alpha = .2) +
geom_hline(yintercept=0, col="red", linetype="dashed") +
geom_text(aes(label = highest), check_overlap = FALSE, nudge_y = .2) +
xlab("Fitted values")+ylab("Residuals")+
ggtitle("Residuals vs Fitted")+theme_classic()
print(p1)
}
}
if (qq_plot == TRUE) {
if (class(lm) != "lm") {
stop("lm must be a linear model")
}
x <- rstudent(lm)
x <- na.omit(x)
ord <- order(x)
n <- length(x)
P <- ppoints(length(x))
df <- data.frame(ord.x = x[ord], z = qnorm(P))
Q.x <- quantile(df$ord.x, c(0.25, 0.75))
Q.z <- qnorm(c(0.25, 0.75))
b <- diff(Q.x)/diff(Q.z)
coef <- c(Q.x[1] - b * Q.z[1], b)
zz <- qnorm(1 - (1 - .95)/2)
SE <- (coef[2]/dnorm(df$z)) * sqrt(P * (1 - P)/n)
fit.value <- coef[1] + coef[2] * df$z
df$upper <- fit.value + zz * SE
df$lower <- fit.value - zz * SE
df$label <- ifelse(df$ord.x > df$upper | df$ord.x < df$lower, names(x)[ord],"")
p <- ggplot(df, aes(x=z, y=ord.x)) +
geom_point() +
geom_abline(intercept = coef[1], slope = coef[2]) +
geom_ribbon(aes(ymin = lower, ymax = upper), alpha=0.2) +
labs(title = "Normal Q-Q", x = "Theoretical Quantiles", y = "Standardized Residuals") +
theme_classic()
p <- p + geom_text(aes(label = label))
print(p)
}
if (scloc_plot == TRUE) {
if (class(lm) != "lm") {
stop("lm must be a linear model")
}
sqrt_standard_resid <- sqrt(abs(rstandard(lm)))
lm[["fitted.values"]]
b <- order(abs(sqrt_standard_resid), decreasing = TRUE)[1:5]
highest <- ifelse(sqrt_standard_resid %in% sqrt_standard_resid[b], labels(sqrt_standard_resid), "")
p<-ggplot(lm, aes(lm[["fitted.values"]], sqrt_standard_resid))+geom_jitter(na.rm=TRUE)
p<-p+stat_smooth(method="loess", na.rm = TRUE, alpha = .2)+xlab("Fitted Value")
p <- p+geom_text(aes(label = highest), nudge_y = .05, nudge_x = .1)
p<-p+ylab(expression(sqrt("|Standardized residuals|")))
p<-p+ggtitle("Scale-Location")+theme_classic()
print(p)
}
if (resvlev_plot == TRUE) {
if (class(lm) != "lm") {
stop("lm must be a linear model")
}
sqrt_standard_resid <- sqrt(abs(rstandard(lm)))
p5<-ggplot(lm, aes(.hat, sqrt_standard_resid))+geom_point(aes(size=.cooksd), na.rm=TRUE) +
stat_smooth(method="loess", na.rm=TRUE) +
xlab("Leverage")+ylab("Standardized Residuals") +
ggtitle("Residuals vs Leverage") +
scale_size_continuous("Cook's Distance", range=c(1,5)) +
theme_classic() +
theme(legend.position="bottom")
print(p5)
}
if (rvo_plot == TRUE & !is.null(time_var)) {
if (class(lm) != "lm") {
stop("lm must be a linear model")
}
if(class(data) != "data.frame") {
stop("df must be a data frame")
}
if(class(data[[time_var]]) != "numeric") {
stop("time variable must be numeric")
}
if (length(data[[time_var]]) == 0) {
stop("time variable must be a variable in data frame")
}
p7 <- ggplot(lm, aes(y = .resid, x = data[[time_var]])) + geom_jitter() +
stat_smooth(method = "loess") +
geom_hline(yintercept = 0, col = "red", linetype = "dashed") +
xlab("Observation Order") + ylab("Residuals") +
ggtitle("Residuals vs Order") +
theme_classic()
print(p7)
}
return(NULL)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.