#' @title Generate a Latent Time Series Object from Data
#' @description Create a \code{lts} object based on a supplied matrix or data frame. The latent time series is obtained by the sum of underlying time series.
#' @param data A multiple-column \code{matrix} or \code{data.frame}. It must contain at least 3 columns of which the last represents the latent time series obtained through the sum of the previous columns.
#' @param start A \code{numeric} that provides the time of the first observation.
#' @param end A \code{numeric} that provides the time of the last observation.
#' @param freq A \code{numeric} that provides the rate/frequency at which the time series is sampled. The default value is 1.
#' @param unit_ts A \code{string} that contains the unit of measure of the time series. The default value is \code{NULL}.
#' @param unit_time A \code{string} that contains the unit of measure of the time. The default value is \code{NULL}.
#' @param name_ts A \code{string} that provides an identifier for the time series data. Default value is \code{NULL}.
#' @param name_time A \code{string} that provides an identifier for the time. Default value is \code{NULL}.
#' @param process A \code{vector} that contains model names of each column in the \code{data} object where the last name is the sum of the previous names.
#' @return A \code{lts} object
#' @author Wenchao Yang and Justin Lee
#' @export
#' @examples
#' model1 = AR1(phi = .99, sigma2 = 1)
#' model2 = WN(sigma2 = 1)
#' col1 = gen_gts(1000, model1)
#' col2 = gen_gts(1000, model2)
#' testMat = cbind(col1, col2, col1+col2)
#' testLts = lts(testMat, unit_time = 'sec', process = c('AR1', 'WN', 'AR1+WN'))
#' plot(testLts)
lts = function(data, start = 0, end = NULL, freq = 1, unit_ts = NULL, unit_time = NULL, name_ts = NULL, name_time = NULL, process = NULL){
# 1. requirment for 'data'
if(!is(data,'matrix') && !is(data,'data.frame')){
stop("'data' must be a matrix or data frame.")
}
# Force data.frame to matrix
if (is.data.frame(data)){
data = data.matrix(data)
}
#check ncol
ncolumn = ncol(data)
if(ncolumn<2){
stop("'data' must have at least two columns.")
}
#check ndata
ndata = nrow(data)
if(ndata == 0 ){stop("'data' contains 0 observations.")}
#check: the last column must equal to the sum of all previous columns
tolerance = 1E-2
sumAllPreviousColumns = apply(data[,1:(ncolumn-1),drop = F], MARGIN = 1, sum)
checkVec = sumAllPreviousColumns - data[,ncolumn]
if(any(checkVec>tolerance)){
stop(paste0('The last column of data must be equal to the sum of all previous columns. The tolerance (for the difference) is ', tolerance,'.' ))
}
# 2. check process
if(!is.null(process)){
if(length(process) != ncolumn ){
stop(paste0('data has ', ncolumn, ' processes (including the latent process). You must specify the name of each process in parameter "process".') )
}
}else{
process = c(paste(rep('Process', times = ncolumn-1), 1:(ncolumn-1), sep = ''), 'Sum')
}
# 3. requirement for 'freq'
if(!is(freq,"numeric") || length(freq) != 1){ stop("'freq' must be one numeric number.") }
if(freq <= 0) { stop("'freq' must be larger than 0.") }
# 4. requirements for 'start' and 'end'
if( is.numeric(start)==F && is.numeric(end)==F){
stop("'start' or 'end' must be specified.")}
if(is.null(start)==F && is.null(end)==F && (end-start)!= ((ndata-1)/freq) ){
stop("end-start == (ndata-1)/freq must be TRUE.")
}
if ( is.null(end) ){
end = start + (ndata - 1)/freq} # freq conversion (unit conversion is handled in graphical function)
else if ( is.null(start) ){
start = end - (ndata - 1)/freq}
# 5. requirement for 'unit_time'
if(!is.null(unit_time)){
if(!unit_time %in% c('ns', 'ms', 'sec', 'second', 'min', 'minute', 'hour', 'day', 'mon', 'month', 'year')){
stop('The supported units are "ns", "ms", "sec", "min", "hour", "day", "month", "year". ')
}
}
# 6. add column name to data
colnames(data) = process
out = structure(.Data = data,
start = start,
end = end, # start and end will not be null now
freq = freq,
unit_ts = unit_ts,
unit_time = unit_time,
name_ts = name_ts,
name_time = name_time,
process = process,
class = c("lts","matrix"))
out
}
#' @title Generate a Latent Time Series Object Based on a Model
#' @description Simulate a \code{lts} object based on a supplied time series model.
#' @param n An \code{interger} indicating the amount of observations generated in this function.
#' @param model A \code{ts.model} or \code{simts} object containing one of the allowed models.
#' @param start A \code{numeric} that provides the time of the first observation.
#' @param end A \code{numeric} that provides the time of the last observation.
#' @param freq A \code{numeric} that provides the rate/frequency at which the time series is sampled. The default value is 1.
#' @param unit_ts A \code{string} that contains the unit of measure of the time series. The default value is \code{NULL}.
#' @param unit_time A \code{string} that contains the unit of measure of the time. The default value is \code{NULL}.
#' @param name_ts A \code{string} that provides an identifier for the time series data. Default value is \code{NULL}.
#' @param name_time A \code{string} that provides an identifier for the time. Default value is \code{NULL}.
#' @param process A \code{vector} that contains model names of each column in the \code{data} object where the last name is the sum of the previous names.
#' @return A \code{lts} object with the following attributes:
#' \describe{
#' \item{start}{The time of the first observation.}
#' \item{end}{The time of the last observation.}
#' \item{freq}{Numeric representation of the sampling frequency/rate.}
#' \item{unit}{A string reporting the unit of measurement.}
#' \item{name}{Name of the generated dataset.}
#' \item{process}{A \code{vector} that contains model names of decomposed and combined processes}
#' }
#' @author James Balamuta, Wenchao Yang, and Justin Lee
#' @export
#' @details
#' This function accepts either a \code{ts.model} object (e.g. AR1(phi = .3, sigma2 =1) + WN(sigma2 = 1)) or a \code{simts} object.
#' @examples
#' # AR
#' set.seed(1336)
#' model = AR1(phi = .99, sigma2 = 1) + WN(sigma2 = 1)
#' test = gen_lts(1000, model)
#' plot(test)
gen_lts = function(n, model, start = 0, end = NULL, freq = 1, unit_ts = NULL,
unit_time = NULL, name_ts = NULL, name_time = NULL, process = NULL){
# 1. Do we have a valid model?
if(!(is(model, "ts.model") || is(model, "simts"))){
stop("model must be created from a ts.model or simts object using a supported component (e.g. AR1(), ARMA(p,q), DR(), RW(), QN(), and WN(). ")
}
if(is(model,"simts")){
model = model$model.hat
}
# 2. freq
if(!is(freq,"numeric") || length(freq) != 1){ stop("'freq' must be numeric.") }
if(freq <= 0) { stop("'freq' must be larger than 0.") }
# 3. requirements for 'start' and 'end'
if( is.numeric(start)==F && is.numeric(end)==F){
stop("'start' or 'end' must be specified.")}
if(is.null(start)==F && is.null(end)==F && (end - start) != ((n - 1)/freq) ){
stop("end-start == (n - 1)/freq must be TRUE.")
}
if ( is.null(end) ){
end = start + (n - 1)/freq # freq conversion (unit conversion is handled in graphical function)
}else if ( is.null(start) ){
start = end - (n - 1)/freq}
# 4. 'unit_time'
if(!is.null(unit_time)){
if(!unit_time %in% c('ns', 'ms', 'sec', 'second', 'min', 'minute', 'hour', 'day', 'mon', 'month', 'year')){
stop('The supported units are "ns", "ms", "sec", "min", "hour", "day", "month", "year". ')
}
}
# Information Required by simts:
desc = model$desc
p = length(desc) # p decomposed processes
obj = model$obj.desc
# 5. check process
if(!is.null(process)){
if(length(process) != (p+1) ){
stop(paste0('data has ', (p+1), ' processes (including the latent process). You must specify the name of each process in parameter "process".') )
}
}
# Identifiability issues
if(any( count_models(desc)[c("DR","QN","RW","WN")] >1)){
stop("Two instances of either DR, QN, RW, or WN have been detected. As a result, the model will have identifiability issues. Please submit a new latent model where each of these models can only be included once.")
}
if(!model$starting){
theta = model$theta
out = gen_lts_cpp(n, theta, desc, obj)
}else{
stop("Need to supply initial values within the ts.model object.")
}
# 6. assign column name
if(!is.null(process)){
colnames(out) = process
}else{
#name of each process
comp.desc = c(desc, paste0(desc, collapse = '+'))
comp.desc2 = orderModel(comp.desc)
comp.desc2[length(comp.desc2)] = 'Sum'
colnames(out) = comp.desc2
process = comp.desc
}
out = structure(.Data = out,
start = start,
end = end, # start and end will not be null now
freq = freq,
unit_ts = unit_ts,
unit_time = unit_time,
name_ts = name_ts,
name_time = name_time,
print = model$print,
process = process,
class = c("lts","matrix"))
out
}
#' @title Plot Latent Time Series Object
#' @description Plot Latent Time Series Data included in an \code{lts} object.
#' @method plot lts
#' @export
#' @keywords internal
#' @param x A \code{lts} object
#' @param xlab A \code{string} that gives a title for the x axis.
#' @param ylab A \code{string} that gives a title for the y axis.
#' @param main A \code{string} that gives an overall title for the plot.
#' @param color A \code{string} that gives a color for the line.
#' @param ... additional arguments affecting the plot produced.
#' @return A plot containing the graph of the latent time series.
#' @author Stephane Gurrier and Justin Lee
plot.lts = function(x, xlab = NULL, ylab = NULL, main = NULL, color = NULL, fixed_range = FALSE, ...){
unit_ts = attr(x, 'unit_ts')
name_ts = attr(x, 'name_ts')
unit_time = attr(x, 'unit_time')
name_time = attr(x, 'name_time')
start = attr(x, 'start')
end = attr(x, 'end')
freq = attr(x, 'freq')
print = attr(x, 'print')
dim_x = attr(x, 'dim')
title_x = attr(x,"dimnames")[[2]]
dim_x = attr(x, "dim")
n_x = length(x)
if (dim_x[1] == 0){stop('Time series is empty!')}
if (dim_x[2] < 3){stop('There is only one latent time series, use gts instead.')}
if(!is(x,"lts")){stop('object must be a lts object. Use function gen_lts() to create it.')}
# Labels
if (!is.null(xlab)){
name_time = xlab
}
if (!is.null(ylab)){
name_ts = ylab
}
if (is.null(name_time)){
name_time = "Time"
}
if (is.null(name_ts)){
name_ts = "Observation"
}
if (!is.null(unit_time)){
name_time = paste(name_time, " (", unit_time, ")", sep = "")
}
if (!is.null(unit_ts)){
name_ts = paste(name_ts, " (", unit_ts, ")", sep = "")
}
if (!is.null(print)){
title_x = c(strsplit(print," [+] ")[[1]], print)
}
if (is.null(main)){
main = title_x
}else{
if (length(main) != dim_x[2]){
warning('"main" is not of the same dimension as the lts object, using
default names instead.')
main = title_x
}
}
# Couleur
if (is.null(color)){
hues = seq(15, 375, length = dim_x[2] + 1)
color = hcl(h = hues, l = 65, c = 100, alpha = 1)[seq_len(dim_x[2])]
}else{
if (length(color) == 1 || length(color) != dim_x[2]){
color = rep(color[1],dim_x[2])
}
}
# X Scales
scales = seq(start, end, length = dim_x[1])
if (is.null(end)){
scales = scales/freq
end = scales[dim_x[1]]
}
# Main plot
par(mfrow = c(dim_x[2], 1), mar = c(0.7, 2,0,0), oma = c(4,3.2,1,1))
for (i in 1:dim_x[2]){
if (fixed_range == TRUE){
plot(NA, xlim = c(start, end), ylim = range(x), xlab = xlab,
xaxt = 'n', yaxt = 'n', bty = "n", ann = FALSE)
}else{
plot(NA, xlim = c(start, end), ylim = range(x[,i]), xlab = xlab,
xaxt = 'n', yaxt = 'n', bty = "n", ann = FALSE)
}
win_dim = par("usr")
par(new = TRUE)
plot(NA, xlim = c(start, end), ylim = c(win_dim[3], win_dim[4] + 0.09*(win_dim[4] - win_dim[3])),
xlab = xlab, xaxt = 'n', yaxt = 'n', bty = "n")
win_dim = par("usr")
# Add grid
grid(NULL, NULL, lty = 1, col = "grey95")
# Add title
x_vec = c(win_dim[1], win_dim[2], win_dim[2], win_dim[1])
y_vec = c(win_dim[4], win_dim[4],
win_dim[4] - 0.09*(win_dim[4] - win_dim[3]),
win_dim[4] - 0.09*(win_dim[4] - win_dim[3]))
polygon(x_vec, y_vec, col = "grey95", border = NA)
text(x = mean(c(win_dim[1], win_dim[2])), y = (win_dim[4] - 0.09/2*(win_dim[4] - win_dim[3])), main[i])
# Add axes and box
lines(x_vec[1:2], rep((win_dim[4] - 0.09*(win_dim[4] - win_dim[3])),2), col = "grey50")
box(col = "grey50")
if (i == dim_x[2]){
axis(1, padj = 0.3)
}
y_axis = axis(2, labels = FALSE, tick = FALSE)
y_axis = y_axis[y_axis < (win_dim[4] - 0.09*(win_dim[4] - win_dim[3]))]
axis(2, padj = -0.2, at = y_axis)
# Add lines
lines(scales, x[,i], type = "l", col = color[i], pch = 16)
}
mtext(name_time, side = 1, outer = TRUE, line = 2)
mtext(name_ts, side = 2, outer = TRUE, line = 2)
par(mfrow = c(1, 1))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.