```{css, echo = FALSE} / Whole document: / body{ font-family: Lato; font-size: 12pt; } / Headers / h1,h2,h3,h4,h5,h6{ font-size: 24pt; }
```r project <- config::get("report")
r project
knitr::opts_chunk$set(echo = FALSE, fig.align = 'left', fig.width = 10, fig.height = 10) library(sageseqr)
targets::tar_load(clean_md) var <- config::get("x_var") summary <- dplyr::group_by_at(clean_md, var) summary <- dplyr::summarise(summary, count = dplyr::n()) knitr::kable(summary)
Visualize the distribution of data.
targets::tar_read(boxplots)
if (!is.null(config::get("sex check"))) { cat("Visualize gene expression of sex chromosomes using XIST as a X-chromosome marker and UTY as a Y-chromosome marker.") targets::tar_read(sex_plot)$plot }
if (!is.null(config::get("sex check"))) { cat("Visualize gene expression across X and Y chromosomes by principal component analysis (PCA).") targets::tar_read(sex_plot)$plot }
Sample swaps identified by discordant sex label, are r glue::glue_collapse(targets::tar_read(sex_plot_pca)$discordant, ", ", last = " and ")
.
if (!is.null(targets::tar_read(sex_plot_pca)$outliers)) { list <- glue::glue_collapse(targets::tar_read(sex_plot_pca)$outliers, ", ", last = " and ") glue::glue("Possible outliers, identified as 2 standard deviations from the mean of samples n split by {config::get('sex check')} are {list}.") } else { cat("No outliers identified.") }
Visualize the relationships between covariates.
correlation_input <- targets::tar_read( correlation_plot )$plot col2 <- grDevices::colorRampPalette(rev(c("#67001F", "#B2182B", "#D6604D", "#F4A582", "#FDDBC7", "#FFFFFF", "#D1E5F0", "#92C5DE", "#4393C3", "#2166AC", "#053061"))) corrplot::corrplot(correlation_input, col = col2(200), tl.col = "#000000")
Remove genes that have less than r config::get("cpm threshold")
counts per million (CPM) in at least r config::get("percent threshold")
of samples per specified condition.
r dim(targets::tar_read(filtered_counts))[1]
genes are used in this analysis.
knitr::kable(targets::tar_read(biotypes))
Check distribution of correlation between genes.
targets::tar_read(gene_coexpression)
targets::tar_read(outliers)$plot
Outliers, based on logCPM expression, are r glue::glue_collapse(targets::tar_read(outliers)$outliers, ", ", last = " and ")
.
Gene features dropped, because they are not annotated in BioMart, are r glue::glue_collapse(targets::tar_read(dropped), ", ", last = " and ")
.
Significant covariates are identified by the pearson correlation (p-value of 1%) between principal component analysis (PCA) of normalized transcripts and variables that meet a 0.1 false discovery rate (FDR) threshold. Significant covariates to adjust for are r glue::glue_collapse(targets::tar_read(significant_covariates_plot)$significant_covariates, ", ", last = " and ")
.
targets::tar_read( significant_covariates_plot )$pc_results
Covariates are added as fixed and random effects iteratively if model improvement by Bayesian Information Criteria (BIC) was observed.
if (!isTRUE(config::get("skip model"))) { summary <- targets::tar_read(model) glue::glue('The best model is: {glue::glue_collapse(as.character(summary$formula), " ")}') } else { glue::glue( '\n\nStepwise regression model not quantified.\n\n' ) }
\n
if (!isTRUE(config::get("skip model"))) { knitr::kable(summary$to_visualize) }
plots <- targets::tar_read(plot_de_volcano) for(p in plots) { print(p) }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.