Description Usage Arguments Details Value Note Author(s) References See Also Examples
Computes fitted values under models used in snm
normalization.
1 2 3 | snm.fitted(object, ...)
## S3 method for class 'snm'
fitted(object, ...)
|
object |
Output from the |
... |
Not used. |
Returns the fitted values under the "null model" (adjustment variables only) and the "full model" (adjustment variables + biological variables).
fit0 |
Linear model fits when regression each probe's normalized data on the null model, |
fit1 |
Linear model fits when regression each probe's normalized data on the full model, |
These fits are useful for investigating the quality of the study-specific model used in the normalization. For example, the residuals can be obtained from the full model fit and examined for latent structure.
John D. Storey <jstorey@princeton.edu>
Mecham BH, Nelson PS, Storey JD (2010) Supervised normalization of microarrays. Bioinformatics, 26: 1308-1315.
1 2 3 4 5 6 7 8 9 10 11 12 13 | ## Not run:
singleChannel <- sim.singleChannel(12345)
snm.obj <- snm(singleChannel$raw.data,
singleChannel$bio.var,
singleChannel$adj.var[,-6],
singleChannel$int.var, num.iter=10)
snm.fit = fitted(snm.obj)
res1 = snm.obj$norm.dat - snm.fit$fit1
snm.svd = fast.svd(res1)
cor(snm.svd$v[,1], singleChannel$adj.var[,6])
plot(snm.svd$v[,1], singleChannel$adj.var[,6])
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.