Description Usage Arguments Author(s) Examples
Fits the mixed effects model
1 | calcArrayEffects(rff, basisSplineFunction, snm.obj, model.objects, M.matrix, lf)
|
rff |
The rff slot from the lmer output |
basisSplineFunction |
B-spline basis function defined by buildBasisFunction |
snm.obj |
An object of class snm |
model.objects |
A list containing the formatted model matrices returned from make.ref.model.matrices |
M.matrix |
Matrix of pooled estimated RNA concentrations. The pooling strategy is defined by the nbins parameter. The element in position i,j is equal to the average RNA concentration on array j of the probes' whose average concentration is in the region spanned by bin i. |
lf |
Object of class mer used for parsing random effects object. |
Brig Mecham <brig.mecham@sagebase.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | ##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.
## The function is currently defined as
function (rff, basisSplineFunction, snm.obj, model.objects, M.matrix)
{
splineDimNames <- paste("Bt", 1:snm.obj$spline.dim, sep = "")
ranfx <- rff
ranfx2 <- lapply(ranfx, function(x) {
x[, splineDimNames]
})
ranfx2 <- ranfx2[names(snm.obj$int.var)]
for (i in 1:length(snm.obj$int.var)) {
x <- names(snm.obj$int.var)[i]
ranfx2[[x]] <- as.matrix(ranfx2[[x]][levels(snm.obj$int.var[[x]]),])
}
ars <- sapply(1:dim(M.matrix)[2], function(i) {
mREFs <- sapply(1:length(ranfx2), function(j) {
model.objects$F.mats[[j]][i, ] %*% ranfx2[[j]]
})
bSM <- predict(basisSplineFunction, M.matrix[, as.numeric(i)])
arsL <- bSM %*% mREFs
rowSums(arsL)
})
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.