Description Usage Arguments Author(s) Examples
Makes data object for fitting the random effects model
1 | makeDataObject(Y.pooled, np, snm.obj, exp, bins)
|
Y.pooled |
Matrix of pooled raw data. Element i,j is the average raw data for every probe in bin i on array j. |
np |
list matching bins to probes |
snm.obj |
An object of class snm |
exp |
New environment to hold the lmer formula |
bins |
list matching bins to probes |
Brig Mecham <brig.mecham@sagebase.org> and John D. Storey <jstorey@princeton.edu>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | ##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.
## The function is currently defined as
function (Y.pooled, np, snm.obj, bSM.model, exp,bins)
{
lnp <- length(np)
num.arrays <- dim(Y.pooled)[2]
signal <- data.frame(y = as.numeric(Y.pooled), probes = factor(rep(1:lnp,
times = num.arrays)))
f <- lapply(1:length(snm.obj$int.var), function(x) {
i <- snm.obj$int.var[, x]
rep(i, each = lnp)
})
f <- as.data.frame(f)
colnames(f) <- names(snm.obj$int.var)
if (dim(snm.obj$adj.var)[2] > 1) {
z <- lapply(2:(dim(snm.obj$adj.var)[2]), function(x) {
i <- snm.obj$adj.var[, x]
rep(i, each = lnp)
})
z <- as.data.frame(z)
colnames(z) <- colnames(snm.obj$adj.var)[-1]
df <- cbind(cbind(cbind(signal, z), f), bSM.model)
}else {
df <- cbind(cbind(signal, f), bSM.model)
}
df$weights = sapply(bins,length) / 50 #mean(sapply(bins,length))
df$weights[df$weights >1] <- 1
TMP <- sapply(1:dim(df)[2], function(x) {
assign(colnames(df)[x], df[, x], envir = exp)
})
as.data.frame(df)
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.