Description Usage Arguments Value Examples
OptClusters is a wrapper of several functions to visualize and compute optimal clusters for different clustering and evaluation methods
1 2 3 4 5 6 7 8 9 10 11 | OptClusters(
df_m,
meth = "kmeans",
dist = "euclidean",
varCat1,
value,
minc = 2,
maxc = 10,
ind = "average silhouette width",
nb = 100
)
|
df_m: |
dataframe containing peaks and metadata |
meth: |
clustering algorithms (meth="kmeans", default value), other values: "pam" or "hclust" |
dist: |
distances ("euclidean", default), "maximum", "manhattan", "canberra", "binary" "minkowski" |
varCat1: |
categorical variable for choosing isolates, examples: "Taxonomie" ,"Genre", "Date.d.analyse" ,"Origine","Ruche", "Nutrition" , "Date.de.récolte" , "Lieu.de.la.ruche" |
value: |
level of catVar1, examples: "Lactobacillus" ("Genre"), Taxonomie("Pediococcus pentosaceus"), "Erica cinerea" ("Nutrition"),... |
minc: |
minimal number of clusters (minc=2, default value) |
maxc: |
maximal number of clusters (maxc=10, default value) |
ind: |
methods to evaluate clustering algorithms:"total within sum of squares" ,"average silhouette width" and "gap statistics" |
nb: |
number of bootstrap samples (nb=100, default value) |
figures and statistics
1 2 3 4 5 6 7 8 | OptClusters(df_Peaks, varCat1="Taxonomie" , value="Enterococcus faecalis"),
OptClusters(df_Peaks, varCat1="Taxonomie" , value="All")
OptClusters(df_Peaks, meth="pam", varCat1="Taxonomie" , value="All", ind="gap statistics"),
OptClusters(df_Peaks, meth="hclust", varCat1="Taxonomie" , value="All", ind="gap statistics")
source: https://rpubs.com/pg2000in/OptimumClusters
http://rstudio-pubs-static.s3.amazonaws.com/265632_3ad9e0b981244e15887677f8dffb39a0.html#using-30-different-indices
https://www.datanovia.com/en/lessons/determining-the-optimal-number-of-clusters-3-must-know-methods/
https://www.rdocumentation.org/packages/factoextra/versions/1.0.7/topics/fviz_nbclust
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.