Description Usage Arguments Details Value Examples
Peak_Detector is a pipeline of two stages for 1) import and processing of Maldi_Tof spectra and 2) peak detection
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | Peak_Detector(
Dp,
filein,
fileout,
keyCode = "Identifiant_MALDI",
speColumn = "Taxonomie",
t = "sqrt",
smooth = "SavitzkyGolay",
baseline = "SNIP",
normalization = "TIC",
Iter = 100,
SN_R = 2,
minFreq = 0.25,
align = TRUE
)
|
Dp: |
folder containing the ".mzXML" files, |
filein: |
metadata input csv file, |
fileout: |
output csv file, |
keyCode: |
code for dataframe joining (default value:"Identifiant_MALDI"), |
speColumn: |
taxonomic identification of isolate (default value, speColumn="Taxonomie"), |
t: |
spectrum transformation, (default value, t="sqrt"), "log" |
smooth: |
smoothing method, (default value smooth="SavitzkyGolay"), "MovingAverage", "WMovingAverage" |
baseline: |
baseline removing method, (default value, baseline="SNIP"), "TopHat", "ConvexHull" |
normalization: |
normalization algorithm (default value, normalization="TIC"), PQN |
Iter: |
number of iterations for baseline removing (default value, Iter=100) |
SN_R: |
signal_to_noise ratio (default value, SN_R=2), |
minFreq: |
the minimum peak frequency for spectrum selection (default value, minFreq=0.25), |
align: |
boolean Boolean parameter to indicate whether or not spectrum alignment is performed (default value, align=TRUE) |
stage 1) import, check of quality, transformation, smoothing, baseline removing, normalization, and alignment of MALDI_TOF spectra
stage 2) peak detection, binning, filtering and merging with metadata ("Filtered_Meta.csv")
merged dataframes and csv file
1 2 3 | df_Peaks<-Peak_Detector("newdata", "Filtered_Meta.csv", "Filtered_Meta_Peaks.csv"),
df_Peaks_0<-Peak_Detector("newdata", "Filtered_Meta.csv", "Filtered_Meta_Peaks_0.csv", minFreq=0, align=FALSE)
df_PeaksTH<-Peak_Detector"newdata", "Filtered_Meta.csv", "Filtered_Meta_Peaks.csv", baseline="TopHat")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.