Description Usage Arguments Value Examples
wrapper of functions for clustering tendency and validation statistics
1 2 3 4 5 6 7 8 9 | PointClusterVal(
df_m,
meth = "hclust",
dist = "euclidean",
meth2 = "ward.D2",
varCat1,
value,
varCat2
)
|
df_m: |
dataframe containing peaks and metadata |
meth: |
clustering algorithms ("hclust", default value), other values: "kmeans", "pam", "clara", "fanny", "hclust","agnes", "diana" |
dist: |
distances ("euclidean", default value), "maximum", "manhattan", "canberra", "binary" "minkowski" |
meth2: |
hc methods ("ward.D2", default value), average", "ward.D", "single", "complete", "mcquitty", "median" or "centroid" |
varCat1: |
categorical variable for choosing isolates, examples: "Taxonomie","Genre","Date.d.analyse","Origine","Ruche", "Nutrition", "Date.de.récolte", "Lieu.de.la.ruche" |
value: |
level of catVar1, examples: "Lactobacillus" ("Genre"), Taxonomie("Pediococcus pentosaceus"), "Erica cinerea" ("Nutrition"),... |
varCat2: |
categorical variable for partitioning the set of isolates chosen by using varCat1 |
figures and statistics
1 2 3 | ff<-PointClusterVal(df_Peaks, varCat1="Genre", value="Lactobacillus", varCat2="Nutrition")
source:https://www.rdocumentation.org/packages/fpc/versions/2.2-8/topics/cluster.stats
https://www.datanovia.com/en/lessons/cluster-validation-statistics-must-know-methods/
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.