Description Usage Arguments Value Examples
visualization and statistics for clustering validation
1 2 3 4 5 6 7 8 9 | VisualOptClusters(
df_m,
meth = "hclust",
meth2 = "ward.D2",
dist = "euclidean",
varCat1,
value,
nc = 3
)
|
df_m: |
dataframe containing peaks and metadata |
meth: |
clustering algorithms ("hclust", default value), other values: "kmeans", "pam", "clara", "fanny", "hclust","agnes", "diana" |
dist: |
distances ("euclidean", default value), "maximum", "manhattan", "canberra", "binary" "minkowski" |
meth2: |
hc methods ("ward.D2", default value), average", "ward.D", "single", "complete", "mcquitty", "median" or "centroid" |
varCat1: |
categorical variable for choosing isolates, examples: "Taxonomie" ,"Genre", "Date.d.analyse" ,"Origine","Ruche", "Nutrition" , "Date.de.récolte" , "Lieu.de.la.ruche" |
value: |
level of catVar1, examples: "Lactobacillus" ("Genre"), Taxonomie("Pediococcus pentosaceus"), "Erica cinerea" ("Nutrition"),... |
nc: |
number of clusters (nc=3, default value) |
figures and statistics
1 2 3 4 5 6 7 | s<-VisualOptClusters(df_Peaks, varCat1="Genre", value="Enterococcus"),
s<-VisualOptClusters(df_Peaks, meth="pam", varCat1="Genre", value="Lactobacillus", nc=2)
s<-VisualOptClusters(df_Peaks, meth="hclust", meth2="average", dist="pearson",varCat1="Genre", value="All", nc=5),
s<-VisualOptClusters(df_Peaks, meth="kmeans", dist="euclidean",varCat1="Genre", value="All", nc=3)
source: https://www.rdocumentation.org/packages/factoextra/versions/1.0.7/topics/fviz_cluster
https://afit-r.github.io/kmeans_clustering
http://rstudio-pubs-static.s3.amazonaws.com/265632_3ad9e0b981244e15887677f8dffb39a0.html#using-30-different-indices
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.