# TODO: UPDATE to work with tidyverse instead of plyr
## Summarizes data.
## Gives count, mean, standard deviation, standard error of the mean, and confidence interval (default 95%).
## data: a data frame.
## measureVar: the name of a column that contains the variable to be summariezed
## groupVars: a vector containing names of columns that contain grouping variables
## na.rm: a boolean that indicates whether to ignore NA's
## conf.interval: the percent range of the confidence interval (default is 95%)
# BASED ON: https://search.r-project.org/CRAN/refmans/ggiraphExtra/html/summarySE.html
# http://journal.sjdm.org/14/141112a/summarySE.r
# summarySE --------------------------------------------------------------------
#' Summarizes data
#'
#' Gives count, mean, standard deviation, standard error of the mean, and confidence interval (default 95%)
#' @param data a data frame
#' @param measureVar the name of a column that contains the variable to be summarized
#' @param groupVars a vector containing names of columns that contain grouping variable(s)
#' @param na.rm a boolean that indicates whether to ignore NA's
#' @param renameMean a boolean that indicates if the mean column should be renamed
#'
#' @author Gabriel N. Camargo-Toledo \email{gcamargo@@sensata.io}
#' @return Dataframe for graphs
#' @keywords sensata microdata metadata analysis summary-statistics
#' @import tidyverse
#' @import sensataDataProg
#'
#' @examples
#' TBD
#' @export
summarySE <- function(data = NULL,
measureVar,
weightsVar = NULL,
groupVars=NULL,
na.rm=FALSE,
conf.interval=.95,
.drop=TRUE,
renameMean = FALSE) {
# New version of length which can handle NA's: if na.rm==T, don't count them
length2 <- function (x, na.rm=FALSE) {
if (na.rm) sum(!is.na(x))
else length(x)
}
# This does the summary. For each group's data frame, return a vector with
# N, mean, and sd
if(is.null(weightsVar)){
datac <- plyr::ddply(data, groupVars, .drop=.drop,
.fun = function(xx, col) {
c(N = length2(xx[[col]], na.rm=na.rm),
mean = mean(xx[[col]], na.rm=na.rm),
sd = sd(xx[[col]], na.rm=na.rm))
},
measureVar)
} else {
datac <- plyr::ddply(data, groupVars, .drop=.drop,
.fun = function(xx, col) {
c(N = length2(xx[[col]], na.rm=na.rm),
mean = Hmisc::wtd.mean(xx[[col]], na.rm=na.rm, weights = xx[[weightsVar]]),
sd = sqrt(Hmisc::wtd.var(xx[[col]], na.rm=na.rm, weights = xx[[weightsVar]]))
)
},
measureVar)
}
# Rename the "mean" column
if (renameMean){
datac <- plyr::rename(datac, c("mean" = measureVar))
}
datac$se <- datac$sd / sqrt(datac$N) # Calculate standard error of the mean
# Confidence interval multiplier for standard error
# Calculate t-statistic for confidence interval:
# e.g., if conf.interval is .95, use .975 (above/below), and use df=N-1
ciMult <- qt(conf.interval/2 + .5, datac$N-1)
datac$ci <- datac$se * ciMult
return(datac)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.