Description Usage Arguments Value Examples
This function takes a list of possible options for the numRegions argument of build_predictor. Using this set of possible numRegions and expression data (the training data / output of filter_regions()), this function builds a predictor for each possible numRegions. Prediction accuracy is then calculated across varying numbers of regions. The numRegions argument that optimizes accuracy in the training data can then be used in build_predictor.
1 2 3 |
inputdata |
output from filter_regions() |
phenodata |
data set with phenotype information; samples in rows,
variables in columns |
phenotype |
phenotype of interest |
covariates |
Which covariates to include in model |
type |
The class of the phenotype of interest (numeric, binary, factor)
|
numRegions_set |
set of numRegions to test |
Prediction accuracies across each numRegions argument tested
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | library('GenomicRanges')
library('dplyr')
## Make up some some region data
regions <- GRanges(seqnames = 'chr2', IRanges(
start = c(28971710:28971712, 29555081:29555083, 29754982:29754984),
end = c(29462417:29462419, 29923338:29923340, 29917714:29917716)))
## make up some expression data for 9 rows and 30 people
data(sysdata, package='phenopredict')
## includes R object 'cm'
exp= cm[1:length(regions),1:30]
## generate some phenotype information
sex = as.data.frame(rep(c("male","female"),each=15))
age = as.data.frame(sample(1:100,30))
pheno = dplyr::bind_cols(sex,age)
colnames(pheno) <- c("sex","age")
## filter regions to be used to build the predictor
inputdata <- filter_regions(expression=exp, regiondata=regions,
phenodata=pheno, phenotype="sex", covariates=NULL,
type="factor", numRegions=5)
regnum <- optimize_numRegions(inputdata=inputdata ,phenodata=pheno,
phenotype="sex", covariates=NULL,type="factor",numRegions_set=c(3,5))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.