#############################
# bootstrapped bias score computation
#' @title Compute bootstrapped approach-bias scores
#' @description Compute bootstrapped approach-bias scores with confidence intervals.
#' @param ds a longformat data.frame
#' @param subjvar Quoted name of the participant identifier column
#' @param pullvar Quoted name of the column indicating pull trials.
#' Pull trials should either be represented by 1, or by the second level of a factor.
#' @param targetvar Name of the column indicating trials featuring the target stimulus.
#' Target stimuli should either be represented by 1, or by the second level of a factor.
#' @param rtvar Name of the reaction time column.
#' @param iters Total number of desired iterations. At least 200 are required to get confidence intervals that make sense.
#' @param algorithm Function (without brackets or quotes) to be used to compute AAT scores. See \link{Algorithms} for a list of usable algorithms.
#' @param trialdropfunc Function (without brackets or quotes) to be used to exclude outlying trials in each half.
#' The way you handle outliers for the reliability computation should mimic the way you do it in your regular analyses.
#' It is recommended to exclude outlying trials when computing AAT scores using the mean double-dfference scores and regression scoring approaches,
#' but not when using d-scores or median double-difference scores.
#' \itemize{
#' \item \code{prune_nothing} excludes no trials (default)
#' \item \code{trial_prune_grubbs} applies a Grubbs' test to the data, removing one outlier at a time until the test is no longer significant.
#' \item \code{trial_prune_3SD} excludes trials deviating more than 3SD from the mean per participant.
#' \item \code{trial_prune_SD_dropcases} removes trials deviating more than a specific number of standard deviations from the participant's mean,
#' and removes participants with an excessive percentage of outliers.
#' Required arguments:
#' \itemize{
#' \item \code{trialsd} - trials deviating more than \code{trialsd} standard deviations from the participant's mean are excluded (optional; default is 3)
#' \item \code{maxoutliers} - participants with a higher percentage of outliers are removed from the data. (optional; default is .15)
#' }
#' \item \code{trial_recode_SD} recodes outlying reaction times to the nearest non-outlying value,
#' with outliers defined as reaction times deviating more than a certain number of standard deviations from the participant's mean. Required argument:
#' \itemize{
#' \item \code{trialsd} - trials deviating more than this many standard deviations from the mean are classified as outliers.
#' }
#' \item \code{trial_prune_percent_subject} and \code{trial_prune_percent_sample} remove trials below and/or above certain percentiles,
#' on a subject-by-subject basis or sample-wide, respectively. The following arguments are available:
#' \itemize{
#' \item \code{lowerpercent} and \code{uppperpercent} (optional; defaults are .01 and .99).
#' }
#' }
#' @param errortrialfunc Function (without brackets or quotes) to apply to an error trial.
#'
#' \itemize{
#' \item \code{prune_nothing} removes no errors (default).
#' \item \code{error_replace_blockmeanplus} replaces error trial reaction times with the block mean, plus an arbitrary extra quantity.
#' If used, the following additional arguments are required:
#' \itemize{
#' \item \code{blockvar} - Quoted name of the block variable (mandatory)
#' \item \code{errorvar} - Quoted name of the error variable, where errors are 1 or TRUE and correct trials are 0 or FALSE (mandatory)
#' \item \code{errorbonus} - Amount to add to the reaction time of error trials. Default is 0.6 (recommended by \code{Greenwald, Nosek, & Banaji, 2003})
#' }
#' \item \code{error_prune_dropcases} removes errors and drops participants if they have more errors than a given percentage. The following arguments are available:
#' \itemize{
#' \item \code{errorvar} - Quoted name of the error variable, where errors are 1 or TRUE and correct trials are 0 or FALSE (mandatory)
#' \item \code{maxerrors} - participants with a higher percentage of errors are excluded from the dataset. Default is .15.
#' }
#' }
#' @param plot Plot the bias scores and their confidence intervals after computation is complete. This gives a good overview of the data.
#' @param include.raw logical indicating whether raw split-half data should be included in the output object.
#' @param parallel If TRUE (default), will use parallel computing to compute results faster.
#' If a doParallel backend has not been registered beforehand,
#' this function will register a cluster and stop it after finishing, which takes some extra time.
#' @param ... Other arguments, to be passed on to the algorithm or outlier rejection functions (see arguments above)
#'
#'
#' @return A list, containing bootstrapped bias scores, their variance, bootstrapped 95 percent confidence intervals,
#' the number of iterations, and a matrix of bias scores for each iteration.
#'
#' @author Sercan Kahveci
#' @examples
#' # Compute 10 bootstrapped AAT scores.
#' boot<-aat_bootstrap(ds=erotica[erotica$is_irrelevant==0,], subjvar="subject",
#' pullvar="is_pull", targetvar="is_target",rtvar="RT",
#' iters=10,algorithm="aat_doublemediandiff",
#' trialdropfunc="trial_prune_3SD",
#' plot=FALSE, parallel=FALSE)
#' plot(boot)
#' print(boot)
#'
#' @export
aat_bootstrap<-function(ds,subjvar,pullvar,targetvar=NULL,rtvar,iters,
algorithm=c("aat_doublemeandiff","aat_doublemediandiff",
"aat_dscore","aat_dscore_multiblock",
"aat_regression","aat_standardregression",
"aat_singlemeandiff","aat_singlemediandiff"),
trialdropfunc=c("prune_nothing","trial_prune_3SD","trial_prune_3MAD",
"trial_prune_SD_dropcases","trial_recode_SD",
"trial_prune_percent_subject","trial_prune_percent_sample",
"trial_prune_grubbs"),
errortrialfunc=c("prune_nothing","error_replace_blockmeanplus","error_prune_dropcases"),
plot=TRUE,include.raw=FALSE,parallel=TRUE,...){
packs<-c("magrittr","dplyr","AATtools")
#Handle arguments
args<-list(...)
algorithm<-ifelse(is.function(algorithm),deparse(substitute(algorithm)),match.arg(algorithm))
if(!(algorithm %in% c("aat_singlemeandiff","aat_singlemediandiff","aat_regression","aat_standardregression")) & is.null(targetvar)){
stop("Argument targetvar missing but required for algorithm!")
}
trialdropfunc<-ifelse(is.function(trialdropfunc),deparse(substitute(trialdropfunc)),match.arg(trialdropfunc))
errortrialfunc<-ifelse(is.function(errortrialfunc),deparse(substitute(errortrialfunc)),match.arg(errortrialfunc))
errorpenalizefunc<-ifelse(errortrialfunc=="error_replace_blockmeanplus",errortrialfunc,"prune_nothing")
errorremovefunc<-ifelse(errortrialfunc=="error_replace_blockmeanplus","prune_nothing",errortrialfunc)
if(errortrialfunc=="error_replace_blockmeanplus"){
stopifnot(!is.null(args$blockvar),!is.null(args$errorvar))
if(is.null(args$errorbonus)){ args$errorbonus<- 0.6 }
if(is.null(args$blockvar)){ args$blockvar<- 0 }
if(is.null(args$errorvar)){ args$errorvar<- 0 }
}
stopifnot(!(algorithm=="aat_dscore_multiblock" & is.null(args$blockvar)))
if(algorithm %in% c("aat_regression","aat_standardregression")){
if(!("formula" %in% names(args))){
args$formula<-as.formula(paste0(rtvar,"~",pullvar,"*",targetvar))
warning("No formula provided. Defaulting to formula ",form2char(args$formula))
}else if(is.character(args$formula)){
args$formula<-as.formula(args$formula)
}
if(!("aatterm" %in% names(args))){
args$aatterm<-paste0(pullvar,":",targetvar)
warning("No AAT-term provided. Defaulting to AAT-term ",args$aatterm)
}
}
ds<-do.call(aat_preparedata,c(list(ds=ds,subjvar=subjvar,pullvar=pullvar,targetvar=targetvar,rtvar=rtvar),args)) %>% mutate(key=1)
#Prepare the cluster
if(parallel){
`%dofunc%` <- `%dopar%`
hasCluster<-getDoParRegistered()
if(!hasCluster){
cluster<-makeCluster(getOption("AATtools.workers"))
registerDoParallel(cluster)
on.exit(unregisterDoParallel(cluster))
}
}else{
`%dofunc%` <- `%do%`
}
#bootstrap loop
results<-
foreach(iter = seq_len(iters), .packages=packs, .combine=cbind) %dofunc% {
#Split data
# iterds<-ds %>% group_by(!!sym(subjvar), !!sym(pullvar), !!sym(targetvar)) %>%
# sample_n(size=n(),replace=TRUE) %>% ungroup()
iterds<-ds[unlist(lapply(split(x=seq_len(nrow(ds)),f=ds[c(subjvar,pullvar,targetvar)]),
FUN=function(x){ x[sample.int(length(x),replace=T)] })),]
#Handle error removal
iterds<-do.call(errorremovefunc,c(args,list(ds=iterds,subjvar=subjvar,rtvar=rtvar)))
#Handle outlying trials
iterds<-do.call(trialdropfunc,c(args,list(ds=iterds,subjvar=subjvar,rtvar=rtvar)))
#Handle error penalization
iterds<-do.call(errorpenalizefunc,c(args,list(ds=iterds,subjvar=subjvar,rtvar=rtvar)))
abds<-do.call(algorithm,c(list(ds=iterds,subjvar=subjvar,pullvar=pullvar,
targetvar=targetvar,rtvar=rtvar),args))
#colnames(abds)<-c(subjvar,paste0("iter", formatC(iter, width = nchar(iters), format = "d", flag = "0")))
outvar<-abds$ab
names(outvar)<-abds[[subjvar]]
outvar
}
#results<-results[!is.na(rownames(results)),]
statset<-data.frame(ppidx=rownames(results),
bias=rowMeans(results,na.rm=TRUE),
var=apply(results,MARGIN = 1,FUN=var,na.rm=TRUE),
lowerci=apply(results,MARGIN=1,FUN=function(x){quantile(x,0.025,na.rm=TRUE)}),
upperci=apply(results,MARGIN=1,FUN=function(x){quantile(x,0.975,na.rm=TRUE)}),
stringsAsFactors=F)
statset$ci<-statset$upperci-statset$lowerci
#q-reliability
bv<-var(statset$bias,na.rm=TRUE)
wv<-mean(statset$var,na.rm=TRUE)
q<-1-wv/bv
output<-list(bias=statset,
reliability=q,
parameters=c(list(ds=ds,
subjvar=subjvar,
pullvar=pullvar,
targetvar=targetvar,
rtvar=rtvar,
iters=iters,
algorithm=algorithm,
trialdropfunc=trialdropfunc,
errortrialfunc=errortrialfunc),args)) %>%
structure(class = "aat_bootstrap")
if(include.raw){
output$iterdata<-results
}
if(plot){ plot(output) }
return(output)
}
#' @export
#' @rdname aat_bootstrap
#' @param x An \code{aat_bootstrap} object.
print.aat_bootstrap<-function(x,...){
cat("Bootstrapped bias scores and confidence intervals",
"\nMean bias score: ", mean(x$bias$bias,na.rm=TRUE),
"\nMean confidence interval: ",mean(x$bias$ci,na.rm=TRUE),
"\nreliability: q = ",x$reliability,
"\nNumber of iterations: ",x$parameters$iters,sep="")
}
#' @export
#' @rdname aat_bootstrap
#' @param x An \code{aat_bootstrap} object.
plot.aat_bootstrap <- function(x,...){
statset<-x$bias
statset<-statset[!is.na(statset$bias) & !is.na(statset$upperci) & !is.na(statset$lowerci),]
rank<-rank(statset$bias)
wideness<-max(statset$upperci) - min(statset$lowerci)
plot(x=statset$bias,y=rank,xlim=c(min(statset$lowerci)-0.01*wideness,max(statset$upperci)+0.01*wideness),
xlab="Bias score",main=paste0("Individual bias scores with 95%CI",
"\nEstimated reliability: q = ",x$reliability))
segments(x0=statset$lowerci,x1=statset$bias-0.005*wideness,y0=rank,y1=rank)
segments(x0=statset$bias+0.005*wideness,x1=statset$upperci,y0=rank,y1=rank)
abline(v=0)
#text(x=statset$bias,y=statset$rownr,labels=statset$ppidx,cex=0.5)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.