calculateDistanceNeigboursProbes | R Documentation |
#' updateTxtClusterOut #' generates summary text after clustering #' @param traitReducedcombinedDFP_Val_Labels data structure with trait reduced results #' @param minP_Val minimum p_value for model to use for clustering #' @param maxP_Val maximum p_value for model to use for clustering #' @param minN minimum n for model to use for clustering #' @param sldNumClasses number of classes to use for clustering #' @return text #' examples updateTxtClusterOut(traitReducedcombinedDFP_Val_Labels, minP_Val, maxP_Val, minN, sldNumClasses) updateTxtClusterOut <- function(traitReducedcombinedDFP_Val_Labels, minP_Val, maxP_Val, minN, sldNumClasses) base::tryCatch( result <- NULL if (is.valid(traitReducedcombinedDFP_Val_Labels)) maxClasses <- length(traitReducedcombinedDFP_Val_Labels$mergedColnames) numRow <- nrow(traitReducedcombinedDFP_Val_Labels$dfP_Val) numCol <- ncol(traitReducedcombinedDFP_Val_Labels$dfP_Val) minClasses <- 1 #dendextend::min_depth(session$userData$sessionVariables$dendTraits) result <- base::paste0("finding trait clusters successful. found minClusters = ", minClasses, "; maxClusters: ", maxClasses, "; Clustering made for numClasses = ", sldNumClasses, ".\n", "size of result df: nrow(CpG)=", numRow, ", ncol(trait)=", numCol, ".") , error = function(e) base::message("An error occurred in updateTxtClusterOut():\n", e) , warning = function(w) base::message("A warning occurred in updateTxtClusterOut():\n", w) , finally = return(shiny::HTML(result)) ) calculateDistanceNeigboursProbes calculate distance from each probe to its neigbours and gives back data frame with distance metrics
calculateDistanceNeigboursProbes(
wd,
clustResProbes,
annotation,
distanceToLook,
numCores
)
wd |
working directory |
clustResProbes |
data structure with clustering result |
annotation |
annotation of CpG (names, location etc.) |
distanceToLook |
maximum distance to look for |
numCores |
number of cores to use for distance calculation |
data.frame with min, mean, max distance and nuber of CpG in distanceToLook window examples calculateDistanceNeigboursProbes(wd, clustResProbes, annotation, distanceToLook, numCores)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.