data(psm, pro)
dat1 <- ms_process(psm = psm, protein = pro, treatment = c("N-FLAG", "UNTAGGED"),
control = "EMPTY", condition = "MRC",
sample.id = c("CLK1_N-FLAG_r1", "CLK1_UNTAGGED_r1", "FLAG_EMPTY_r1",
"CLK1_N-FLAG_r2", "CLK1_UNTAGGED_r2", "FLAG_EMPTY_r2"))
dat2 <- ms_process(psm = psm, protein = pro, treatment = c("EMPTY", "N-FLAG", "UNTAGGED"),
condition = "MRC",
sample.id = c("CLK1_N-FLAG_r1", "CLK1_UNTAGGED_r1", "FLAG_EMPTY_r1",
"CLK1_N-FLAG_r2", "CLK1_UNTAGGED_r2", "FLAG_EMPTY_r2"))
dat3 <- ms_process(psm = psm, protein = pro, treatment = c("1", "2", "3"),
condition = "VC")
test_that("ms_process works with/without controls and sample ids", {
expect_error(dat1, NA)
expect_error(dat2, NA)
expect_error(dat3, NA)
})
test_that("ms_boxplot shows boxplots of vsn values across samples", {
bp <- ms_boxplot(dat1)
expect_length(bp, 3)
expect_equal(unique(unlist(lapply(bp, class))), c("gg", "ggplot"))
})
# Vector of groups
g <- c("EMPTY", "N-FLAG", "UNTAGGED")
test_that("ms_mean_var shows mean variance relationship", {
mv <- ms_mean_var(dat1, g = g,
title = c("No Flag", "CLK1 N-Flagged", "CLK1 Untagged"))
expect_length(mv, length(g) + 1)
expect_equal(unique(unlist(lapply(mv, class))), c("gg", "ggplot"))
})
test_that("ms_mean_var takes title from g if none provided", {
mv_no_title <- ms_mean_var(dat1, g = g)
expect_equal(purrr::map_chr(mv_no_title, c("labels", "title")),
c("vsn(Raw data values)", paste("vsn", g)))
})
all_vars <-
c("Gene",
"Omnibus Treatment F statistic",
"Omnibus Treatment F statistic numerator degrees of freedom",
"Omnibus Treatment F statistic denominator degrees of freedom",
"Omnibus Treatment p-value",
"Benjamini Hochberg adjusted omnibus p-value",
"Fitted Mean of Empty group",
"Fitted Mean of N-Flagged group",
"Fitted Mean of Untagged group",
"Standard Error of full model",
"N-Flagged Average treatment effect t statistic value",
"N-Flagged Average treatment effect t statistic Wald-based p-value",
"N-Flagged Benjamini Hochberg adjusted Wald p-value for average treatment effect",
"N-Flagged log2(average treatment effect difference from control) lower 95% confidence limit",
"N-Flagged log2(average treatment effect difference from control)",
"N-Flagged log2(average treatment effect difference from control) upper 95% confidence limit",
"N-Flagged Fold change lower 95% confidence limit",
"N-Flagged Fold change for average treatment effect",
"N-Flagged Fold change upper 95% confidence limit",
"N-Flagged Absolute fold change direction",
"N-Flagged Absolute fold change lower 95% confidence interval limit",
"N-Flagged Absolute fold change (average treatment effect across peptides)",
"N-Flagged Absolute fold change upper 95% confidence interval limit",
"Untagged Average treatment effect t statistic value",
"Untagged Average treatment effect t statistic Wald-based p-value",
"Untagged Benjamini Hochberg adjusted Wald p-value for average treatment effect",
"Untagged log2(average treatment effect difference from control) lower 95% confidence limit",
"Untagged log2(average treatment effect difference from control)",
"Untagged log2(average treatment effect difference from control) upper 95% confidence limit",
"Untagged Fold change lower 95% confidence limit",
"Untagged Fold change for average treatment effect",
"Untagged Fold change upper 95% confidence limit",
"Untagged Absolute fold change direction",
"Untagged Absolute fold change lower 95% confidence interval limit",
"Untagged Absolute fold change (average treatment effect across peptides)",
"Untagged Absolute fold change upper 95% confidence interval limit",
"Accession",
"Sequence",
"Annotated.Sequence",
"Descriptions",
"Modifications",
"Reporter.Quan.Result.ID")
info_vars <- c("Gene", "Accession", "Sequence", "Annotated.Sequence",
"Descriptions", "Modifications", "Reporter.Quan.Result.ID")
resMat <- suppressWarnings(
ms_summarize(dat1, g = c("FLAG_EMPTY", "CLK1_N-FLAG", "CLK1_UNTAGGED"),
level = "Gene", col.names = all_vars, info.vars = info_vars))
test_that("ms_summarize works", {
expect_error(resMat, NA)
expect_length(resMat, 14 * length(g))
})
test_that("ms_top works", {
topMat <- ms_top(resMat, level = "Gene")
expect_error(topMat, NA)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.