R/ProtoEmulatorDocumentation.R

# --------------------------------
# Emulator Prototype Documentation
# --------------------------------
#' @title Prototype Class for Emulator-like Objects
#'
#' @description Converts a prediction object into a form useable in hmer.
#'
#'     The history matching process can be used for objects that are not
#'     created by the \code{hmer} package: most notably Gaussian Process
#'     (GP) emulators but even for simple linear models. This R6 class
#'     converts such an object into a form that can be called directly and
#'     reliably by the methods of the package, including for visualisation
#'     and diagnostics.
#'
#' @name Proto_emulator
#'
#' @importFrom R6 R6Class
#'
#' @section Constructor: \code{Proto_emulator$new(ranges, output_name,
#'     predict_func, variance_func, ...)}
#'
#' @section Arguments:
#'
#'     Required:
#'
#'     \code{ranges} A list of ranges for the inputs to the model.
#'
#'     \code{output_name} The name of the output modelled.
#'
#'     \code{predict_func} The function that provides the predictions at
#'     a new point or points. The first argument of this function should be
#'     \code{x}, where \code{x} is a \code{data.frame} of points. Additional
#'     arguments can be specified as long as they match additional objects
#'     passed via \code{...} (see below for details).
#'
#'     \code{variance_func} The function that encodes the prediction error
#'     due to the model of choice. This, too, takes an argument \code{x} as
#'     above as its first argument. Additional arguments can be specified as
#'     long as they match additional objects passed via \code{...}
#'     (see below for details).
#'
#'     Optional:
#'
#'     \code{implausibility_func} A function that takes points \code{x} and a
#'     target \code{z} (and potentially a cutoff value \code{cutoff} and additional
#'     arguments) and returns a measure of closeness of the predicted value to the target (or
#'     a boolean representing whether the prediction is within the specified
#'     cutoff). Any custom implausibility should satisfy the definition: that is,
#'     a point that is unlikely to match to the observation should have higher
#'     implausibility than a point likely to match to the observation. If, for
#'     example, a likelihood to be maximised is used as a surrogate for an
#'     implausibility function, then one should transform it accordingly.
#'
#'     If this argument is not provided, the standard implausibility is used:
#'     namely, the absolute value of the difference between prediction and
#'     observation, divided by the square root of the sum in quadrature of
#'     the errors.
#'
#'     Additional arguments can be specified as long as they match additional
#'     objects passed via \code{...} (see below for details).
#'
#'     \code{print_func} If the prediction object has a suitable print function
#'     that one wishes to transfer to the R6 class (e.g. \code{summary.lm}), it
#'     is specified here.
#'
#'     \code{...} Additional objects to pass to \code{predict_func}, \code{variance_func},
#'     \code{implausibility_func} or \code{print_func}. The names of these objects
#'     must match the additional argument names in the corresponding functions.
#'
#' @section Constructor Details:
#'
#'     The constructor must take, as a minimum, the first four arguments (input
#'     ranges, output name, and the prediction and variance functions). Default
#'     behaviour exists if the implausibility function and print function are not
#'     specified. The output of the constructor is an R6 object with the classes
#'     "Emulator" and "EmProto".
#'
#' @section Accessor Methods:
#'
#'     Note that these have the same external structure as those in \code{\link{Emulator}}.
#'
#'     \code{get_exp(x)} Returns the prediction.
#'
#'     \code{get_cov(x)} Returns the prediction error.
#'
#'     \code{implausibility(x, z, cutoff = NULL)} Returns the 'implausibility'.
#'
#'     \code{print()} Prints relevant details of the object.
#'
#' @export
#'
#' @examples
#'     # Use linear regression with an "error" on the SIR dataset.
#'     ranges <- list(aSI = c(0.1, 0.8), aIR = c(0, 0.5), aSR = c(0, 0.05))
#'     targets <- SIREmulators$targets
#'     lms <- purrr::map(names(targets),
#'      ~step(lm(data = SIRSample$training[,c(names(ranges), .)],
#'       formula = as.formula(paste0(., "~(",
#'        paste0(names(ranges), collapse = "+"),
#'        ")^2"
#'       ))
#'     ), trace = 0))
#'     # Set up the proto emulators
#'     proto_ems <- purrr::map(seq_along(lms), function(l) {
#'       Proto_emulator$new(
#'          ranges,
#'          names(targets)[l],
#'          function(x) predict(lms[[l]], x),
#'          function(x) predict(lms[[l]], x, se.fit = TRUE)$se.fit^2 +
#'             predict(lms[[l]], x, se.fit = TRUE)$residual.scale^2,
#'          print_func = function() print(summary(lms[[l]]))
#'       )
#'     }) |> setNames(names(targets))
#'     # Test with some hmer functions
#'     nth_implausible(proto_ems, SIRSample$validation, targets)
#'     emulator_plot(proto_ems)
#'     emulator_plot(proto_ems, 'imp', targets = targets)
#'     validation_diagnostics(proto_ems, targets, SIRSample$validation)
#'     new_points <- generate_new_design(proto_ems, 100, targets)
#'
NULL
Tandethsquire/hmer documentation built on Oct. 25, 2024, 11:09 a.m.