args <- expand_grid(
"competition_sd" = siga_vec_comsie()[c(1, 9)],
"immigration_rate" = c(1e-04, 1e-02),
"replicate" = 1:100,
"daisie_version" = c("CS", "IW"),
"ddmodel" = 11,
"params_i" = 1
)
path <- "../fabrika/comsie_data/daisie/output/"
files <- list.files("../fabrika/comsie_data/daisie/output/")
path_to_files <- files %>% map_chr(function(file) paste0(path, file))
ml <- path_to_files %>% map_dfr(readRDS) %>%
dplyr::mutate(across(contains(c("lambda_", "mu_", "gamma_")), ~ . / 1e04)) %>%
dplyr::filter(!is.na(loglik)) %>%
as_tibble() %>%
dplyr::filter(
# gamma_0 incorrect for those and should be run again
!(daisie_version == "IW" & immigration_rate == 0.01)
)
overview <- left_join(args, ml, by = c("competition_sd", "immigration_rate", "replicate", "daisie_version", "ddmodel", "params_i"))
overview_cs <- overview %>% dplyr::filter(daisie_version == "CS")
overview_iw <- overview %>% dplyr::filter(daisie_version == "IW")
# 192 missing jobs, about half
completed_cs <- overview_cs %>% dplyr::filter(!is.na(job_id))
# + 3 that failed
completed_iw <- overview_iw %>% dplyr::filter(!is.na(job_id))
# 187 missing
sum(completed_iw)
logbook <- read_csv("comsie_data/daisie/logs/logbook_daisie_ml.csv")
job_ids <- logbook$job_id[1392:1511]
status <- job_status(job_ids)
beepr::beep(1)
logbook$status <- status
write_csv(logbook, "comsie_data/daisie/logs/logbook_daisie_ml.csv")
logbook %>% dplyr::group_by(status) %>%
count()
rows <- which(logbook$daisie_version == "IW" & logbook$immigration_rate == 1e-04)
runtime <- job_runtime(logbook[rows, ]$job_id)
beepr::beep(1)
logbook$walltime[rows] <- runtime
to_enquire <- logbook %>% dplyr::filter(
is.na(status) | status %in% c("RUNNING")
) %>% pull(job_id)
to_enquire <- 601:741
status <- job_status(job_ids[to_enquire])
beepr::beep(1)
logbook$status[to_enquire] <- status
args <- logbook %>%
dplyr::filter(status == "OUT_OF_MEMORY") %>%
select(competition_sd, immigration_rate, replicate, daisie_version, ddmodel, params_i) %>%
dplyr::rename("siga" = competition_sd, "gamma" = immigration_rate)
# 141 oom'd; 215 completed; 2 failed; 42 running
completed_iw %>%
mutate("success" = !is.na(loglik)) %>%
group_by(competition_sd, immigration_rate, success) %>%
count()
# siga hi gamma lo 80 / 100
# siga hi gamma hi 3 / 100
# siga lo gamma lo 93 / 100
# siga lo gamma hi 0 / 100
# lost all IW high immigration
# but got most IW low immigration
survivors <- completed_iw %>%
mutate("success" = !is.na(loglik)) %>%
dplyr::filter(
competition_sd == 0.091, immigration_rate == 0.01, success
) %>% pull(replicate)
logbook %>%
dplyr::filter(
competition_sd == 0.091, immigration_rate == 0.01,
daisie_version == "IW",
replicate %in% survivors
) %>% pull(job_id)
ml_cs <- ml %>%
dplyr::filter(daisie_version == "CS")
ml_cs %>%
dplyr::group_by(competition_sd, immigration_rate, init_gamma_0) %>%
count()
args <- ml_cs %>%
dplyr::filter(
init_gamma_0 == 0.000000001
) %>%
select(competition_sd, immigration_rate, replicate, params_i, ddmodel, daisie_version) %>%
dplyr::rename("siga" = competition_sd, "gamma" = immigration_rate)
ml_iw <- ml %>%
dplyr::filter(daisie_version == "IW")
ml_iw %>%
dplyr::group_by(competition_sd, immigration_rate, init_gamma_0) %>%
count()
ml_iw %>% dplyr::filter(
immigration_rate == 0.0001
) %>%
mutate("success" = !is.na(loglik)) %>%
dplyr::group_by(competition_sd, immigration_rate, success) %>%
count()
files_to_rm <- glue::glue_data(args,
"daisie_ml_siga_{siga}_gamma_{gamma}_rep_{replicate}_{daisie_version}_ddmodel_11_1.rds"
)
fs::file_delete(
paste0(path, files_to_rm)
)
session <- ssh::ssh_connect("p282688@peregrine.hpc.rug.nl")
ssh::ssh_exec_wait(
session = session,
command = paste0("rm /data/p282688/fabrika/comsie_data/daisie/output/", files_to_rm)
)
ssh::ssh_disconnect(session)
args <- logbook %>% dplyr::filter(
job_id %in% job_ids
) %>%
select(competition_sd, immigration_rate, replicate, params_i, ddmodel, daisie_version) %>%
dplyr::rename("siga" = competition_sd, "gamma" = immigration_rate)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.