# Param estimates
siga <- 0.1
sigk <- 1
mls_without_fossil <- comrad_params_retained() %>%
pmap(function(siga, sigk) {
cat(siga, sigk, "\n")
readRDS(glue::glue("../fabrika/comrad_data/ml_results/ml_without_fossil_sigk_{sigk}_siga_{siga}_new.rds")) %>%
filter_aic_best2()
})
mls_with_fossil <- comrad_params_retained() %>%
pmap(function(siga, sigk) {
cat(siga, sigk, "\n")
ml_with <- readRDS(glue::glue("../fabrika/comrad_data/ml_results/ml_with_fossil_sigk_{sigk}_siga_{siga}.rds"))
})
hat_k_tbl <- readRDS("../fabrika/scripts/hat_k_estimates.rds") %>%
dplyr::transmute(k_estimate, "sig_a" = round(siga, 1), "sig_k" = sigk)
gg_ls <- comrad_params_retained() %>%
pmap(function(siga, sigk) {
#if (!are_params_retained(siga, sigk)) return(NULL)
cat(siga, sigk, "\n")
ml <- readRDS(glue::glue("../fabrika/comrad_data/ml_results/ml_without_fossil_sigk_{sigk}_siga_{siga}_new.rds")) %>%
filter_aic_best2()
ml_with <- readRDS(glue::glue("../fabrika/comrad_data/ml_results/ml_with_fossil_sigk_{sigk}_siga_{siga}.rds"))
# gg_aicw <- ml %>%
# dplyr::filter(!is.nan(aicw)) %>%
# ungroup(tree) %>%
# group_by(dd_model) %>%
# summarise("aicw" = mean(aicw)) %>%
# ggplot(aes(y = aicw, x = 1, fill = dd_model)) +
# geom_col(show.legend = FALSE) +
# scale_fill_manual(values = dd_model_colours()) +
# theme_void() +
# labs(
# title = bquote(sigma[K] ~ "=" ~ .(sigk) ~ sigma[alpha] ~ "=" ~ .(siga))
# ) +
# coord_flip()
gg_title <- cowplot::ggdraw() +
cowplot::draw_label(
label = bquote(sigma[K] ~ "=" ~ .(sigk) ~ sigma[alpha] ~ "=" ~ .(siga)),
vjust = 0.5, hjust = 0.5
) +
theme(panel.background = element_rect(fill = "grey80"))
gg_lambda <- ml %>%
ggplot(aes(y = ml_lambda_0, x = dd_model, fill = dd_model)) +
geom_boxplot(outlier.size = 0.2, show.legend = FALSE) +
geom_point(data = ml_with, size = 1, colour = "red", show.legend = FALSE) +
geom_point(data = ml_with, size = 0.5, colour = "white", show.legend = FALSE) +
theme_bw() +
scale_y_log10() +
scale_fill_manual(values = dd_model_colours()) +
labs(
y = bquote(lambda[0])
) +
theme(
axis.title.y = element_text(vjust = 0.5, angle = 0),
axis.title.x = element_blank(),
panel.background = element_rect(fill = "#d8eaf2"),
panel.grid = element_line(colour = "#c2d3db")
)
gg_mu <- ml %>%
dplyr::mutate(
dd_model = dd_model %>% fct_relevel("lc", "pc", "xc", "ll", "pl", "xl", "lp", "pp", "xp", "lx", "px", "xx")
) %>%
ggplot(aes(y = ml_mu_0, x = dd_model, fill = dd_model)) +
geom_boxplot(outlier.size = 0.2, show.legend = FALSE) +
geom_point(data = ml_with, size = 1, colour = "red", show.legend = FALSE) +
geom_point(data = ml_with, size = 0.5, colour = "white", show.legend = FALSE) +
theme_bw() +
scale_y_log10() +
scale_fill_manual(values = dd_model_colours()) +
labs(
y = bquote(mu[0])
) +
theme(
axis.title.y = element_text(vjust = 0.5, angle = 0),
axis.title.x = element_blank(),
panel.background = element_rect(fill = "#efd5d0"),
panel.grid = element_line(colour = "#d3bbb7")
)
y_max <- min(max(ml$ml_k, na.rm = TRUE), max(ml_with$ml_k) * 4)
y_min <- min(min(ml$ml_k, na.rm = TRUE) * 0.8, min(ml_with$ml_k) * 0.8)
hat_k <- readRDS("../fabrika/scripts/hat_k_estimates.rds") %>%
dplyr::transmute(k_estimate, "sig_a" = round(siga, 1), "sig_k" = sigk) %>%
dplyr::filter(near(sig_a, siga) & sig_k == sigk) %>%
pull(k_estimate)
gg_k <- ml %>%
ggplot(aes(y = ml_k, x = dd_model, fill = dd_model)) +
geom_boxplot(outlier.size = 0.2, show.legend = FALSE) +
geom_hline(yintercept = hat_k, colour = "forestgreen") +
geom_point(data = ml_with, size = 1, colour = "red", show.legend = FALSE) +
geom_point(data = ml_with, size = 0.5, colour = "white", show.legend = FALSE) +
theme_bw() +
#scale_y_log10() +
scale_fill_manual(values = dd_model_colours()) +
labs(
y = bquote(K)
) +
theme(
axis.title.y = element_text(vjust = 0.5, angle = 0),
axis.title.x = element_blank(),
panel.background = element_rect(fill = "#d0efd3"),
panel.grid = element_line(colour = "#c3ddc5")
) +
coord_cartesian(ylim = c(y_min, y_max))
#y_max <- max(max(ml$ml_alpha, na.rm = TRUE), max(ml_with$ml_alpha, na.rm = TRUE))
#y_min <- min(min(ml$ml_alpha, na.rm = TRUE), min(ml_with$ml_alpha, na.rm = TRUE))
gg_phi <- ml %>%
ggplot(aes(y = ml_alpha, x = dd_model, fill = dd_model)) +
geom_boxplot(outlier.size = 0.2, show.legend = FALSE) +
geom_point(data = ml_with, size = 1, colour = "red", show.legend = FALSE) +
geom_point(data = ml_with, size = 0.5, colour = "white", show.legend = FALSE) +
theme_bw() +
scale_fill_manual(values = dd_model_colours()) +
labs(
y = bquote(phi)
) +
theme(
axis.title.y = element_text(vjust = 0.5, angle = 0),
axis.title.x = element_blank(),
panel.background = element_rect(fill = "#e8dbf6"),
panel.grid = element_line(colour = "#d0c3dd")
) +
coord_cartesian(ylim = c(0, 1))
return(list(
"gg_title" = gg_title,
#"gg_aicw" = gg_aicw,
"gg_lambda" = gg_lambda,
"gg_mu" = gg_mu,
"gg_k" = gg_k,
"gg_phi" = gg_phi
))
})
gg_ls[[1]]$gg_phi
gg_ls <- purrr::compact(gg_ls)
ggs <- gg_ls %>% map(function(gg) {
cowplot::plot_grid(
gg$gg_title,
cowplot::plot_grid(
gg$gg_lambda, gg$gg_mu, gg$gg_k, gg$gg_phi,
ncol = 4, align = "h"
),
nrow = 2, rel_heights = c(0.10, 0.90)
)
})
ggs1 <- ggs[1:3]
ggs2 <- ggs[4:8]
ggs3 <- ggs[9:15]
ggs4 <- ggs[16:23]
ggs5 <- ggs[24:32]
ggs5[[1]]
ggrid <- cowplot::plot_grid(
plotlist = ggs1, nrow = 3, ncol = 1
)
filename <- "fig_params_sigk1.png"
path_local <- paste0("~/Github/fabrika/figs/", filename)
ragg::agg_png(
path_local,
width = 20, # 20 per col
height = 4 * 3, # 4 per row
units = "cm",
scaling = 0.75,
res = 300
)
ggrid
invisible(dev.off())
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.