# Part 1: write the model equations ---------------------------------------
#### Write the equations of your model, followng RxODE format
model_RxODE <- RxODE({
# write your equations here !
# Example (to replace):
d/dt(Venetoclax) <- -ke_Venetoclax * Venetoclax
#
})
## Verification: perform verification number1
# Part 2: parameters, initial states and time measurement ---------------------------------------
## You need to fill the following section.
## Easiest way is to first eval "model_extract()" and copy paste the output
## To directly have pre-fille the right parameter defaults values and initial states
## You can of course do modifications if needed
parameters_default_values <- c(ke_Venetoclax = 0.3) # paremeters value to be used by default (NA if you want to force providing value)
initial_cmt_values <- c(Venetoclax = 0) # initial compartment values. At least one, and every missing cmt name would be set to 0
times <- seq(0,48, 1) # times you want to see your observations
## Verification: perform verification number2
# Part 3: determine the fate of the cell ----------------------------------
# res will be the results of the simulations (do "res <- simulations()" to help fill the file)
# criteria should be an expression working with res with final output being a TRUE of FALSE
# TRUE being cell death, FALSE being cell survival
criteria <- expr ({
min(res$Venetoclax[res$time <6]) > 1E-5
})
## Verification: perform verification number3
# parametre / conc qui s'ils sont augmenté et mort alors morts, si diminué et survie alors survie
param_death <- c("conc1", "conc2", "conc3", "conc4")
# parametre / conc qui s'ils sont augmenté et mort alors morts, si diminué et survie alors survie
param_survive <- c("ke_Venetoclax")
# Part 4: data and concentration to test -------------------------------------
# data shoud have at least ID, Value and concX columns, X being replace by drug number (one col by drug concentration)
# Avoid any column starting with "conc" if it is not a drug concentration / dose column
data_VT <- read.table("D:/these/Second_project/QSP/VirtualTumor/datademo_rework.csv", sep = ";", header = T) %>%
as_tibble
# Normally the following code will automatically detect numbers of drug and
# extract the different concentration levels
ndrug <- sum(grepl("^conc", names(data_VT)))
for(a in 1:ndrug){
drug <- paste0("conc", a)
expr(!!parse_expr(drug) <- unique(data_VT[[!!drug]])) %>%
eval
}
# You can always modify manually with such code
# ndrug <- 4
# conc1 <- c(0,0.08,0.16,0.32,0.64,1.3,2.60,5,10,20)
# conc2 <- c(0,0.08,0.16,0.32,0.64,1.3,2.60,5,10,20)
# conc3 <- c(0,0.08,0.16,0.32,0.64,1.3,2.60,5,10,20)
# conc4 <- c(0,5,10,15)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.