#dyn.load("./src/rectime.so")
est_add <- function(formula, d.event, d.regular, method="kernel", bandwidth=NULL, low=NULL, up=NULL, tau=NULL)
{
covar <- all.vars(formula)
time <- covar[1]
p <- length(covar) - 1
udt <- sort(unique(d.event[,time]))
m1 <- table(d.event[,time])
inteup <- c()
idall <- unique(c(d.event$id, d.regular$id))
N <- length(idall)
for (i in 1:length(idall)){
inteup <- c(inteup, unique(c(d.regular$cent[which(d.regular$id==idall[i])],d.event$cent[which(d.event$id==idall[i])])))
}
inteup <- sort(inteup)
if (method=="kernel")
{
regular.sub <- d.regular[which(d.regular[,time]!=0),]
regular.subz1 <- matrix(unlist(regular.sub[,c("id",time,covar[2],"cent")]),ncol=4)
if (is.null(bandwidth)){
if (is.null(up)) up <- tau
bandwidth <- select.con_add(regularz1=regular.subz1, low=low, up=up,tau=tau,N=N)*(N^(-1/3))
}
part1 <- c()
part2 <- matrix(NA, nrow=p, ncol=p)
for (i in 1:p){
subzi <- regular.subz1
subzi[,3] <- regular.sub[,covar[i+1]]
s1.i.t <- function(t){
if (t < bandwidth) {ker <- .Fortran("kernel",bcarr=as.single(subzi),dim=as.integer(nrow(subzi)),bandwidth=as.single(bandwidth),tt=as.single(bandwidth),ker=as.single(0))
} else if (t > (tau-bandwidth)) {ker <- .Fortran("kernel",bcarr=as.single(subzi),dim=as.integer(nrow(subzi)),bandwidth=as.single(bandwidth),tt=as.single(tau-bandwidth),ker=as.single(0))
} else {ker <- .Fortran("kernel",bcarr=as.single(subzi),dim=as.integer(nrow(subzi)),bandwidth=as.single(bandwidth),tt=as.single(t),ker=as.single(0))}
return(ker$ker[1])
}
s1.i.t <- Vectorize(s1.i.t)
part1.i <- sum(d.event[,covar[i+1]]) - sum(s1.i.t(udt)[!is.na(s1.i.t(udt))] * m1[!is.na(s1.i.t(udt))])
part1 <- c(part1, part1.i)
for (j in i:p){
subzj <- regular.subz1
subzj[,3] <- regular.sub[,covar[j+1]]
s1.j.t <- function(t){
if (t < bandwidth) {ker <- .Fortran("kernel",bcarr=as.single(subzj),dim=as.integer(nrow(subzj)),bandwidth=as.single(bandwidth),tt=as.single(bandwidth),ker=as.single(0))
} else if (t > (tau-bandwidth)) {ker <- .Fortran("kernel",bcarr=as.single(subzj),dim=as.integer(nrow(subzj)),bandwidth=as.single(bandwidth),tt=as.single(tau-bandwidth),ker=as.single(0))
} else {ker <- .Fortran("kernel",bcarr=as.single(subzj),dim=as.integer(nrow(subzj)),bandwidth=as.single(bandwidth),tt=as.single(t),ker=as.single(0))}
return(ker$ker[1])
}
s1.j.t <- Vectorize(s1.j.t)
subzij <- regular.subz1
subzij[,3] <- regular.sub[,covar[i+1]]*regular.sub[,covar[j+1]]
s2.ij.t <- function(t){
if (t < bandwidth) {ker <- .Fortran("kernel",bcarr=as.single(subzij),dim=as.integer(nrow(subzij)),bandwidth=as.single(bandwidth),tt=as.single(bandwidth),ker=as.single(0))
} else if (t > (tau-bandwidth)) {ker <- .Fortran("kernel",bcarr=as.single(subzij),dim=as.integer(nrow(subzij)),bandwidth=as.single(bandwidth),tt=as.single(tau-bandwidth),ker=as.single(0))
} else {ker <- .Fortran("kernel",bcarr=as.single(subzij),dim=as.integer(nrow(subzij)),bandwidth=as.single(bandwidth),tt=as.single(t),ker=as.single(0))}
return(ker$ker[1])
}
s2.ij.t <- Vectorize(s2.ij.t)
inte.f.ij <- function(t) {
u <- (s2.ij.t(t) - (s1.i.t(t))*(s1.j.t(t)))
return(u) }
intesum.ij <- (length(inteup))*integrate(f=inte.f.ij, 0, inteup[1], subdivisions =30000L,stop.on.error = FALSE)$value
for (k in 1:(length(inteup)-1)) {
intesum.ij <- intesum.ij + (length(inteup)-k)*integrate(f=inte.f.ij, inteup[k], inteup[k+1], subdivisions =30000L, stop.on.error = FALSE)$value
}
part2[i,j] <- part2[j,i] <- intesum.ij
}
}
est <- as.vector(part1 %*% solve(part2))
}
if (method=="ACCF")
{
#prepare the data for ACCF
pdata <- NULL
for( k in 1:N){
foo <- NULL
foo1 <- d.regular[d.regular$id==idall[k],]
foo2 <- d.event[d.event$id==idall[k],]
if( nrow(foo1)>0 | nrow(foo2)>0 ){
tallsub <- sort(unique(c(foo1[,time], foo2[,time])))
centime <- unique(foo1$cent)
tallsub <- c(tallsub, max((max(tallsub)+10^(-10)),centime))
foo <- data.frame(cbind(id=idall[k], start=tallsub[-length(tallsub)],
stop=tallsub[-1]))
for (i in 1:p)
{
foo[,covar[i+1]] <- sapply(foo$start,
function(s, t1=foo1[,time], x1=foo1[,covar[i+1]], t2=foo2[,time],
x2=foo2[,covar[i+1]]){
if( any(s==t1)){ x1[s==t1]} else { x2[s==t2]} } )
}
pdata <- rbind(pdata, foo)
}
}
#estimation
part1 <- c()
part2 <- matrix(NA, nrow=p, ncol=p)
for (i in 1:p){
s1.i.t <- function(t, start=pdata$start, stop=pdata$stop, x=pdata[,covar[i+1]]){
mean(x[t>=start & t<stop])}
s1.i.t <- Vectorize(s1.i.t)
part1.i <- sum(d.event[,covar[i+1]]) - sum(s1.i.t(udt)[!is.na(s1.i.t(udt))] * m1[!is.na(s1.i.t(udt))])
part1 <- c(part1, part1.i)
for (j in i:p){
s1.j.t <- function(t, start=pdata$start, stop=pdata$stop, x=pdata[,covar[j+1]]){
mean(x[t>=start & t<stop])}
s1.j.t <- Vectorize(s1.j.t)
s2.ij.t <- function(t, start=pdata$start, stop=pdata$stop, x=pdata[,covar[i+1]]*pdata[,covar[j+1]]){
mean(x[t>=start & t<stop])}
s2.ij.t <- Vectorize(s2.ij.t)
inte.f.ij <- function(t) {
u <- (s2.ij.t(t) - (s1.i.t(t))*(s1.j.t(t)))
return(u) }
intesum.ij <- (length(inteup))*integrate(f=inte.f.ij, 0, inteup[1], subdivisions =30000L,stop.on.error = FALSE)$value
for (k in 1:(length(inteup)-1)) {
intesum.ij <- intesum.ij + (length(inteup)-k)*integrate(f=inte.f.ij, inteup[k], inteup[k+1], subdivisions =30000L, stop.on.error = FALSE)$value
}
part2[i,j] <- part2[j,i] <- intesum.ij
}
}
est <- as.vector(part1 %*% solve(part2))
}
if (method=="interp")
{
b.all <- rbind(d.regular, d.event)
b.all <- b.all[order(b.all[,time]),]
b.all <- b.all[order(b.all$id),]
#estimation
part1 <- c()
part2 <- matrix(NA, nrow=p, ncol=p)
for (i in 1:p){
s1.i.t <- function(t){
b.all.sub <- b.all[which(b.all$cent >= t),]
b.allsub <- matrix(unlist(b.all.sub[,c("id",time,covar[i+1],"cent")]),ncol=4)
inter <- .Fortran("inter",ball=as.single(b.allsub),idall=as.single(unique(b.allsub[,1])),dim=as.integer(nrow(b.allsub)), length=as.integer(length(unique(b.allsub[,1]))),t=as.single(t),tau=as.single(tau),yinte=as.single(rep(0,length(unique(b.allsub[,1])))))
out <- mean(inter$yinte)
return(out)}
s1.i.t <- Vectorize(s1.i.t)
part1.i <- sum(d.event[,covar[i+1]]) - sum(s1.i.t(udt)[!is.na(s1.i.t(udt))] * m1[!is.na(s1.i.t(udt))])
part1 <- c(part1, part1.i)
for (j in i:p){
s1.j.t <- function(t){
b.all.sub <- b.all[which(b.all$cent >= t),]
b.allsub <- matrix(unlist(b.all.sub[,c("id",time,covar[j+1],"cent")]),ncol=4)
inter <- .Fortran("inter",ball=as.single(b.allsub),idall=as.single(unique(b.allsub[,1])),dim=as.integer(nrow(b.allsub)), length=as.integer(length(unique(b.allsub[,1]))),t=as.single(t),tau=as.single(tau),yinte=as.single(rep(0,length(unique(b.allsub[,1])))))
out <- mean(inter$yinte)
return(out)}
s1.j.t <- Vectorize(s1.j.t)
s2.ij.t <- function(t){
b.all.sub <- b.all[which(b.all$cent >= t),]
b.allsub1 <- matrix(unlist(b.all.sub[,c("id",time,covar[i+1],"cent")]),ncol=4)
inter1 <- .Fortran("inter",ball=as.single(b.allsub1),idall=as.single(unique(b.allsub1[,1])),dim=as.integer(nrow(b.allsub1)), length=as.integer(length(unique(b.allsub1[,1]))),t=as.single(t),tau=as.single(tau),yinte=as.single(rep(0,length(unique(b.allsub1[,1])))))
b.allsub2 <- matrix(unlist(b.all.sub[,c("id",time,covar[j+1],"cent")]),ncol=4)
inter2 <- .Fortran("inter",ball=as.single(b.allsub2),idall=as.single(unique(b.allsub2[,1])),dim=as.integer(nrow(b.allsub2)), length=as.integer(length(unique(b.allsub2[,1]))),t=as.single(t),tau=as.single(tau),yinte=as.single(rep(0,length(unique(b.allsub2[,1])))))
out <- mean(inter1$yinte*inter2$yinte, na.rm=TRUE)
return(out)}
s2.ij.t <- Vectorize(s2.ij.t)
inte.f.ij <- function(t) {
u <- (s2.ij.t(t) - (s1.i.t(t))*(s1.j.t(t)))
return(u) }
intesum.ij <- (length(inteup))*integrate(f=inte.f.ij, 0, inteup[1], subdivisions =30000L,stop.on.error = FALSE)$value
for (k in 1:(length(inteup)-1)) {
intesum.ij <- intesum.ij + (length(inteup)-k)*integrate(f=inte.f.ij, inteup[k], inteup[k+1], subdivisions =30000L, stop.on.error = FALSE)$value
}
part2[i,j] <- part2[j,i] <- intesum.ij
}
}
est <- as.vector(part1 %*% solve(part2))
}
return(invisible(list(est=est,model="add", method=method, bandwidth=bandwidth)))
}
boot_add <- function(formula, d.event, d.regular, method, nb=50, bandwidth, tau=NULL)
{
# if (missing(bandwidth)) stop('argument "bandwidth" is missing, with no default value')
idall <- unique(c(d.event$id, d.regular$id))
N <- length(idall)
bootest <- NULL
i=1
while (i<=nb){
#print(i)
boot.id <- sample(idall, replace=T)
b.event <- b.regular <- NULL
for(k in 1:N){
if(any(d.event$id == boot.id[k]) ){
foo1 <- d.event[d.event$id == boot.id[k],]
foo1$id <- k
b.event <- rbind( b.event, foo1 )
}
if(any(d.regular$id == boot.id[k]) ){
foo2 <- d.regular[d.regular$id == boot.id[k],]
foo2$id <- k
b.regular <- rbind( b.regular, foo2 )
}
}
invisible(capture.output(est <- est_add(formula=formula, d.event=b.event, d.regular=b.regular, method=method, bandwidth=bandwidth,tau=tau)))
bootest <- rbind(bootest, est[[1]])
i <- i+1
}
bootsd <- apply(bootest, 2, sd)
return(invisible(bootsd))
}
select.con_add <- function(regularz1, low, up,tau,N)
{
s1.1.t.cv <- function(data,t,bandwidth){
if (t < bandwidth) {ker <- .Fortran("kernel",bcarr=as.single(data),dim=as.integer(nrow(data)),bandwidth=as.single(bandwidth),tt=as.single(bandwidth),ker=as.single(0))
} else if (t > (tau-bandwidth)) {ker <- .Fortran("kernel",bcarr=as.single(data),dim=as.integer(nrow(data)),bandwidth=as.single(bandwidth),tt=as.single(tau-bandwidth),ker=as.single(0))
} else {ker <- .Fortran("kernel",bcarr=as.single(data),dim=as.integer(nrow(data)),bandwidth=as.single(bandwidth),tt=as.single(t),ker=as.single(0))}
return(ker$ker[1])
}
mse <- function(c,regularz1)
{
cvsum <- 0
ids <- unique(regularz1[,1])
for (i in 1:length(ids))
{
del <- which(regularz1[,1]==ids[i])
if (length(del)>0) {
for (k in 1:length(del))
{
datasub <- matrix(unlist(regularz1[-del,]),ncol=4)
cvsum <- cvsum + (regularz1[del[k],3]-s1.1.t.cv(datasub,regularz1[del[k],2],bandwidth=c*N^(-1/5)))^2
}
}
}
return(cvsum)
}
sel <- optimize(mse, interval=c(low,up),regularz1=regularz1)$minimum
if (abs(sel-up) < 0.1) {
up2 <- up
while (abs(sel-up2) < 0.1)
{
up2 <- up+10
sel <- optimize(mse, interval=c(up,up2),regularz1=regularz1)$minimum
up <- up2
}
}
return(sel)
}
base_add <- function(t, theta, formula, d.event, d.regular, method, bandwidth, tau=NULL)
{
covar <- all.vars(formula)
time <- covar[1]
p <- length(covar) - 1
if (t < min(d.event[,time])) {
baseline <- 0 } else {
idall <- unique(c(d.event$id, d.regular$id))
N <- length(idall)
#estimation
udt <- sort(unique(d.event[,time]))
m1 <- table(d.event[,time])
gt <- function(t){
centall <- c()
for (i in 1:N)
{
centall <- c(centall, unique(c(d.regular[which(d.regular$id==idall[i]),]$cent, d.event[which(d.event$id==idall[i]),]$cent)))
}
sum(t <= centall)
}
gt <- Vectorize(gt)
if (method=="kernel") {
regular.sub <- d.regular[which(d.regular[,time]!=0),]
regular.subz1 <- matrix(unlist(regular.sub[,c("id",time,covar[2],"cent")]),ncol=4)
part1 <- c()
for (i in 1:p){
subzi <- regular.subz1
subzi[,3] <- regular.sub[,covar[i+1]]
s1.i.t <- function(t){
if (t < bandwidth) {ker <- .Fortran("kernel",bcarr=as.single(subzi),dim=as.integer(nrow(subzi)),bandwidth=as.single(bandwidth),tt=as.single(bandwidth),ker=as.single(0))
} else if (t > (tau-bandwidth)) {ker <- .Fortran("kernel",bcarr=as.single(subzi),dim=as.integer(nrow(subzi)),bandwidth=as.single(bandwidth),tt=as.single(tau-bandwidth),ker=as.single(0))
} else {ker <- .Fortran("kernel",bcarr=as.single(subzi),dim=as.integer(nrow(subzi)),bandwidth=as.single(bandwidth),tt=as.single(t),ker=as.single(0))}
return(ker$ker[1])
}
s1.i.t <- Vectorize(s1.i.t)
part1 <- c(part1, integrate(f=s1.i.t, 0, t, subdivisions =30000L,stop.on.error = FALSE)$value)
}
udtsub <- sort(unique(d.event[which(d.event[,time]<= t),time]))
m1sub <- table(d.event[which(d.event[,time]<= t),time])
baseline <- sum(1/gt(udtsub)*m1sub) - part1 %*% theta
}
if (method=="ACCF") {
#prepare the data for ACCF
pdata <- NULL
for( k in 1:N){
foo <- NULL
foo1 <- d.regular[d.regular$id==idall[k],]
foo2 <- d.event[d.event$id==idall[k],]
if( nrow(foo1)>0 | nrow(foo2)>0 ){
tallsub <- sort(unique(c(foo1[,time], foo2[,time])))
centime <- unique(foo1$cent)
tallsub <- c(tallsub, max((max(tallsub)+10^(-10)),centime))
foo <- data.frame(cbind(id=idall[k], start=tallsub[-length(tallsub)],
stop=tallsub[-1]))
for (i in 1:p)
{
foo[,covar[i+1]] <- sapply(foo$start,
function(s, t1=foo1[,time], x1=foo1[,covar[i+1]], t2=foo2[,time],
x2=foo2[,covar[i+1]]){
if( any(s==t1)){ x1[s==t1]} else { x2[s==t2]} } )
}
pdata <- rbind(pdata, foo)
}
}
part1 <- c()
for (i in 1:p){
s1.i.t <- function(t, start=pdata$start, stop=pdata$stop, x=pdata[,covar[i+1]]){
mean(x[t>=start & t<stop])}
s1.i.t <- Vectorize(s1.i.t)
part1 <- c(part1, integrate(f=s1.i.t, 0, t, subdivisions =30000L,stop.on.error = FALSE)$value)
}
udtsub <- sort(unique(d.event[which(d.event[,time]<= t),time]))
m1sub <- table(d.event[which(d.event[,time]<= t),time])
baseline <- sum(1/gt(udtsub)*m1sub) - part1 %*% theta
}
if (method=="interp") {
b.all <- rbind(d.regular, d.event)
b.all <- b.all[order(b.all[,time]),]
b.all <- b.all[order(b.all$id),]
part1 <- c()
for (i in 1:p){
s1.i.t <- function(t){
b.all.sub <- b.all[which(b.all$cent >= t),]
b.allsub <- matrix(unlist(b.all.sub[,c("id",time,covar[i+1],"cent")]),ncol=4)
inter <- .Fortran("inter",ball=as.single(b.allsub),idall=as.single(unique(b.allsub[,1])),dim=as.integer(nrow(b.allsub)), length=as.integer(length(unique(b.allsub[,1]))),t=as.single(t),tau=as.single(tau),yinte=as.single(rep(0,length(unique(b.allsub[,1])))))
out <- mean(inter$yinte)
return(out)}
s1.i.t <- Vectorize(s1.i.t)
part1 <- c(part1, integrate(f=s1.i.t, 0, t, subdivisions =30000L,stop.on.error = FALSE)$value)
}
udtsub <- sort(unique(d.event[which(d.event[,time]<= t),time]))
m1sub <- table(d.event[which(d.event[,time]<= t),time])
baseline <- sum(1/gt(udtsub)*m1sub) - part1 %*% theta
}
}
return(invisible(baseline))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.