#dyn.load("./src/rectime.so")
#to use score_am, there has to be at least one covariate in the additive part and one
#covariate in the multiplicative part
score_am <- function(theta, formula, d.event, d.regular, est.method, bandwidth, low, up, tau)
{
time <- all.vars(formula[[2]])
mulcovar <- all.names(formula[[3]][2])
addcovar <- all.names(formula[[3]][3])
mulcovar <- mulcovar[((length(mulcovar)-1)/2+1):length(mulcovar)]
addcovar <- addcovar[((length(addcovar)-1)/2+1):length(addcovar)]
pmul <- length(mulcovar)
padd <- length(addcovar)
beta <- theta[1:pmul]
gamma <- theta[(pmul+1):(pmul+padd)]
idall <- unique(c(d.event$id, d.regular$id))
N <- length(idall)
udt <- sort(unique(d.event[,time]))
m1 <- table(d.event[,time])
inteup <- c()
idall <- unique(c(d.regular$id, d.event$id))
for (i in 1:length(idall))
{
inteup <- c(inteup, unique(c(d.regular$cent[which(d.regular$id==idall[i])],d.event$cent[which(d.event$id==idall[i])])))
}
inteup <- sort(inteup)
if (est.method=="kernel")
{
regular.sub <- d.regular[which(d.regular[,time]!=0),]
regular.subz1 <- matrix(unlist(regular.sub[,c("id",time,addcovar[1],"cent")]),ncol=4)
event.subsx0m <- matrix(unlist(d.event[,c("id",time,addcovar[1],"cent")]),ncol=4)
regular.subsx0 <- regular.subz1
regular.subsx0m <- regular.subz1
regular.subsx0[,3] <- 0
event.subsx0m[,3] <- 0
for (i in 1:pmul)
{
regular.subsx0[,3] <- regular.subsx0[,3] + beta[i]*regular.sub[,mulcovar[i]]
event.subsx0m[,3] <- event.subsx0m[,3] + beta[i]*d.event[,mulcovar[i]]
}
regular.subsx0m[,3] <- exp(-regular.subsx0[,3])
regular.subsx0[,3] <- exp(regular.subsx0[,3])
event.subsx0m[,3] <- exp(-event.subsx0m[,3])
s0.t <- function(t){
if (t < bandwidth) {ker <- .Fortran("kernel",bcarr=as.single(regular.subsx0),dim=as.integer(nrow(regular.subsx0)),bandwidth=as.single(bandwidth),tt=as.single(bandwidth),ker=as.single(0))
} else if (t > (tau-bandwidth)) {ker <- .Fortran("kernel",bcarr=as.single(regular.subsx0),dim=as.integer(nrow(regular.subsx0)),bandwidth=as.single(bandwidth),tt=as.single(tau-bandwidth),ker=as.single(0))
} else {ker <- .Fortran("kernel",bcarr=as.single(regular.subsx0),dim=as.integer(nrow(regular.subsx0)),bandwidth=as.single(bandwidth),tt=as.single(t),ker=as.single(0))}
return(ker$ker[1])
}
s0.t <- Vectorize(s0.t)
part11 <- c()
part12 <- matrix(NA, nrow=padd, ncol=padd)
for (i in 1:padd)
{
subzi <- regular.subz1
subzi[,3] <- regular.sub[,addcovar[i]]
s1.i.t <- function(t){
if (t < bandwidth) {ker <- .Fortran("kernel",bcarr=as.single(subzi),dim=as.integer(nrow(subzi)),bandwidth=as.single(bandwidth),tt=as.single(bandwidth),ker=as.single(0))
} else if (t > (tau-bandwidth)) {ker <- .Fortran("kernel",bcarr=as.single(subzi),dim=as.integer(nrow(subzi)),bandwidth=as.single(bandwidth),tt=as.single(tau-bandwidth),ker=as.single(0))
} else {ker <- .Fortran("kernel",bcarr=as.single(subzi),dim=as.integer(nrow(subzi)),bandwidth=as.single(bandwidth),tt=as.single(t),ker=as.single(0))}
return(ker$ker[1])
}
s1.i.t <- Vectorize(s1.i.t)
part11.i <- sum(d.event[,addcovar[i]]*event.subsx0m[,3]) - sum(s1.i.t(udt)[which(s0.t(udt)!=0)]/s0.t(udt)[which(s0.t(udt)!=0)]* m1[which(s0.t(udt)!=0)])
part11 <- c(part11, part11.i)
for (j in i:padd)
{
subzj <- regular.subz1
subzj[,3] <- regular.sub[,addcovar[j]]
s1.j.t <- function(t){
if (t < bandwidth) {ker <- .Fortran("kernel",bcarr=as.single(subzj),dim=as.integer(nrow(subzj)),bandwidth=as.single(bandwidth),tt=as.single(bandwidth),ker=as.single(0))
} else if (t > (tau-bandwidth)) {ker <- .Fortran("kernel",bcarr=as.single(subzj),dim=as.integer(nrow(subzj)),bandwidth=as.single(bandwidth),tt=as.single(tau-bandwidth),ker=as.single(0))
} else {ker <- .Fortran("kernel",bcarr=as.single(subzj),dim=as.integer(nrow(subzj)),bandwidth=as.single(bandwidth),tt=as.single(t),ker=as.single(0))}
return(ker$ker[1])
}
s1.j.t <- Vectorize(s1.j.t)
subzij <- regular.subz1
subzij[,3] <- regular.sub[,addcovar[i]]*regular.sub[,addcovar[j]]*regular.subsx0m[,3]
s2.ij.t <- function(t){
if (t < bandwidth) {ker <- .Fortran("kernel",bcarr=as.single(subzij),dim=as.integer(nrow(subzij)),bandwidth=as.single(bandwidth),tt=as.single(bandwidth),ker=as.single(0))
} else if (t > (tau-bandwidth)) {ker <- .Fortran("kernel",bcarr=as.single(subzij),dim=as.integer(nrow(subzij)),bandwidth=as.single(bandwidth),tt=as.single(tau-bandwidth),ker=as.single(0))
} else {ker <- .Fortran("kernel",bcarr=as.single(subzij),dim=as.integer(nrow(subzij)),bandwidth=as.single(bandwidth),tt=as.single(t),ker=as.single(0))}
return(ker$ker[1])
}
s2.ij.t <- Vectorize(s2.ij.t)
inte.f.ij <- function(t) {
if (s0.t(t)!=0){
u <- (s2.ij.t(t) - s1.i.t(t)*s1.j.t(t)/s0.t(t))
} else {
u <- 0
}
return(u) }
inte.f.ij <- Vectorize(inte.f.ij)
intesum.ij <- (length(inteup))*integrate(f=inte.f.ij, 0, inteup[1], subdivisions =30000L,stop.on.error = FALSE)$value
for (k in 1:(length(inteup)-1)) {
intesum.ij <- intesum.ij + (length(inteup)-k)*integrate(f=inte.f.ij, inteup[k], inteup[k+1], subdivisions =30000L, stop.on.error = FALSE)$value
}
part12[i,j] <- part12[j,i] <- intesum.ij
}
}
part21 <- c()
part22 <- matrix(NA, nrow=pmul, ncol=padd)
for (i in 1:pmul)
{
subzi <- regular.subz1
subzi[,3] <- regular.sub[,mulcovar[i]]*regular.subsx0[,3]
s1.i.t <- function(t){
if (t < bandwidth) {ker <- .Fortran("kernel",bcarr=as.single(subzi),dim=as.integer(nrow(subzi)),bandwidth=as.single(bandwidth),tt=as.single(bandwidth),ker=as.single(0))
} else if (t > (tau-bandwidth)) {ker <- .Fortran("kernel",bcarr=as.single(subzi),dim=as.integer(nrow(subzi)),bandwidth=as.single(bandwidth),tt=as.single(tau-bandwidth),ker=as.single(0))
} else {ker <- .Fortran("kernel",bcarr=as.single(subzi),dim=as.integer(nrow(subzi)),bandwidth=as.single(bandwidth),tt=as.single(t),ker=as.single(0))}
return(ker$ker[1])
}
s1.i.t <- Vectorize(s1.i.t)
part21.i <- sum(d.event[,mulcovar[i]]) - sum(s1.i.t(udt)[which(s0.t(udt)!=0)]/s0.t(udt)[which(s0.t(udt)!=0)]* m1[which(s0.t(udt)!=0)])
part21 <- c(part21, part21.i)
for (j in 1:padd)
{
subzj <- regular.subz1
subzj[,3] <- regular.sub[,addcovar[j]]
s1.j.t <- function(t){
if (t < bandwidth) {ker <- .Fortran("kernel",bcarr=as.single(subzj),dim=as.integer(nrow(subzj)),bandwidth=as.single(bandwidth),tt=as.single(bandwidth),ker=as.single(0))
} else if (t > (tau-bandwidth)) {ker <- .Fortran("kernel",bcarr=as.single(subzj),dim=as.integer(nrow(subzj)),bandwidth=as.single(bandwidth),tt=as.single(tau-bandwidth),ker=as.single(0))
} else {ker <- .Fortran("kernel",bcarr=as.single(subzj),dim=as.integer(nrow(subzj)),bandwidth=as.single(bandwidth),tt=as.single(t),ker=as.single(0))}
return(ker$ker[1])
}
s1.j.t <- Vectorize(s1.j.t)
subzij <- regular.subz1
subzij[,3] <- regular.sub[,mulcovar[i]]*regular.sub[,addcovar[j]]
s2.ij.t <- function(t){
if (t < bandwidth) {ker <- .Fortran("kernel",bcarr=as.single(subzij),dim=as.integer(nrow(subzij)),bandwidth=as.single(bandwidth),tt=as.single(bandwidth),ker=as.single(0))
} else if (t > (tau-bandwidth)) {ker <- .Fortran("kernel",bcarr=as.single(subzij),dim=as.integer(nrow(subzij)),bandwidth=as.single(bandwidth),tt=as.single(tau-bandwidth),ker=as.single(0))
} else {ker <- .Fortran("kernel",bcarr=as.single(subzij),dim=as.integer(nrow(subzij)),bandwidth=as.single(bandwidth),tt=as.single(t),ker=as.single(0))}
return(ker$ker[1])
}
s2.ij.t <- Vectorize(s2.ij.t)
inte.f.ij <- function(t) {
if (s0.t(t)!=0){
u <- (s2.ij.t(t) - s1.i.t(t)*s1.j.t(t)/s0.t(t))
} else {
u <- 0
}
return(u) }
inte.f.ij <- Vectorize(inte.f.ij)
intesum.ij <- (length(inteup))*integrate(f=inte.f.ij, 0, inteup[1], subdivisions =30000L,stop.on.error = FALSE)$value
for (k in 1:(length(inteup)-1)) {
intesum.ij <- intesum.ij + (length(inteup)-k)*integrate(f=inte.f.ij, inteup[k], inteup[k+1], subdivisions =30000L, stop.on.error = FALSE)$value
}
part22[i,j] <- intesum.ij
}
}
part1 <- part11 - part12 %*% gamma
part2 <- part21 - part22 %*% gamma
res <- t(part1) %*% part1 + t(part2) %*% part2
}
if (est.method=="ACCF")
{
#prepare the data for ACCF
pdata <- NULL
for( k in 1:N){
foo <- NULL
foo1 <- d.regular[d.regular$id==idall[k],]
foo2 <- d.event[d.event$id==idall[k],]
if( nrow(foo1)>0 | nrow(foo2)>0 ){
tallsub <- sort(unique(c(foo1[,time], foo2[,time])))
centime <- unique(foo1$cent)
tallsub <- c(tallsub, max((max(tallsub)+10^(-10)),centime))
foo <- data.frame(cbind(id=idall[k], start=tallsub[-length(tallsub)],
stop=tallsub[-1]))
for (i in 1:pmul)
{
foo[,mulcovar[i]] <- sapply(foo$start,
function(s, t1=foo1[,time], x1=foo1[,mulcovar[i]], t2=foo2[,time],
x2=foo2[,mulcovar[i]]){
if( any(s==t1)){ x1[s==t1]} else { x2[s==t2]} } )
}
for (i in 1:padd)
{
foo[,addcovar[i]] <- sapply(foo$start,
function(s, t1=foo1[,time], x1=foo1[,addcovar[i]], t2=foo2[,time],
x2=foo2[,addcovar[i]]){
if( any(s==t1)){ x1[s==t1]} else { x2[s==t2]} } )
}
pdata <- rbind(pdata, foo)
}
}
#estimation
pdatas0 <- pdatas0m <- pdata
event.subsx0m <- matrix(unlist(d.event[,c("id",time,addcovar[1],"cent")]),ncol=4)
pdatas0$s0 <- event.subsx0m[,3] <- 0
for (i in 1:pmul){
pdatas0$s0 <- pdatas0$s0 + beta[i]*pdata[,mulcovar[i]]
event.subsx0m[,3] <- event.subsx0m[,3] + beta[i]*d.event[,mulcovar[i]]
}
pdatas0m$s0 <- exp(-pdatas0$s0)
pdatas0$s0 <- exp(pdatas0$s0)
event.subsx0m[,3] <- exp(-event.subsx0m[,3])
s0.t <- function(t, start=pdatas0$start, stop=pdatas0$stop, x=pdatas0$s0){
mean(x[t>=start & t<stop])}
s0.t <- Vectorize(s0.t)
part11 <- c()
part12 <- matrix(NA, nrow=padd, ncol=padd)
for (i in 1:padd)
{
s1.i.t <- function(t, start=pdata$start, stop=pdata$stop, x=pdata[,addcovar[i]]){
mean(x[t>=start & t<stop])}
s1.i.t <- Vectorize(s1.i.t)
part11.i <- sum(d.event[,addcovar[i]]*event.subsx0m[,3]) - sum(s1.i.t(udt)[which(s0.t(udt)!=0)]/s0.t(udt)[which(s0.t(udt)!=0)]* m1[which(s0.t(udt)!=0)])
part11 <- c(part11, part11.i)
for (j in i:padd)
{
s1.j.t <- function(t, start=pdata$start, stop=pdata$stop, x=pdata[,addcovar[j]]){
mean(x[t>=start & t<stop])}
s1.j.t <- Vectorize(s1.j.t)
s2.ij.t <- function(t, start=pdata$start, stop=pdata$stop, x=pdata[,addcovar[i]]*pdata[,addcovar[j]]*pdatas0m$s0){
mean(x[t>=start & t<stop])}
s2.ij.t <- Vectorize(s2.ij.t)
inte.f.ij <- function(t) {
if (s0.t(t)!=0){
u <- (s2.ij.t(t) - s1.i.t(t)*s1.j.t(t)/s0.t(t))
} else {
u <- 0
}
return(u) }
inte.f.ij <- Vectorize(inte.f.ij)
intesum.ij <- (length(inteup))*integrate(f=inte.f.ij, 0, inteup[1], subdivisions =30000L,stop.on.error = FALSE)$value
for (k in 1:(length(inteup)-1)) {
intesum.ij <- intesum.ij + (length(inteup)-k)*integrate(f=inte.f.ij, inteup[k], inteup[k+1], subdivisions =30000L, stop.on.error = FALSE)$value
}
part12[i,j] <- part12[j,i] <- intesum.ij
}
}
part21 <- c()
part22 <- matrix(NA, nrow=pmul, ncol=padd)
pdatas1 <- pdata
for (i in 1:pmul)
{
pdatas1[,mulcovar[i]] <- pdatas1[,mulcovar[i]]*pdatas0$s0
s1.i.t <- function(t, start=pdatas1$start, stop=pdatas1$stop, x=pdatas1[,mulcovar[i]]){
mean(x[t>=start & t<stop])}
s1.i.t <- Vectorize(s1.i.t)
part21.i <- sum(d.event[,mulcovar[i]]) - sum(s1.i.t(udt)[which(s0.t(udt)!=0)]/s0.t(udt)[which(s0.t(udt)!=0)]* m1[which(s0.t(udt)!=0)])
part21 <- c(part21, part21.i)
for (j in 1:padd)
{
s1.j.t <- function(t, start=pdata$start, stop=pdata$stop, x=pdata[,addcovar[j]]){
mean(x[t>=start & t<stop])}
s1.j.t <- Vectorize(s1.j.t)
s2.ij.t <- function(t, start=pdata$start, stop=pdata$stop, x=pdata[,mulcovar[i]]*pdata[,addcovar[j]]){
mean(x[t>=start & t<stop])}
s2.ij.t <- Vectorize(s2.ij.t)
inte.f.ij <- function(t) {
if (s0.t(t)!=0){
u <- (s2.ij.t(t) - s1.i.t(t)*s1.j.t(t)/s0.t(t))
} else {
u <- 0
}
return(u) }
inte.f.ij <- Vectorize(inte.f.ij)
intesum.ij <- (length(inteup))*integrate(f=inte.f.ij, 0, inteup[1], subdivisions =30000L,stop.on.error = FALSE)$value
for (k in 1:(length(inteup)-1)) {
intesum.ij <- intesum.ij + (length(inteup)-k)*integrate(f=inte.f.ij, inteup[k], inteup[k+1], subdivisions =30000L, stop.on.error = FALSE)$value
}
part22[i,j] <- intesum.ij
}
}
part1 <- part11 - part12 %*% gamma
part2 <- part21 - part22 %*% gamma
res <- t(part1) %*% part1 + t(part2) %*% part2
}
if (est.method=="interp")
{
b.all <- rbind(d.regular, d.event)
b.all <- b.all[order(b.all[,time]),]
b.all <- b.all[order(b.all$id),]
#estimation
b.alls0 <- b.alls0m <- b.all
b.alls0$s0 <- b.alls0m$s0 <- 0
event.subsx0m <- matrix(unlist(d.event[,c("id",time,addcovar[1],"cent")]),ncol=4)
event.subsx0m[,3] <- 0
for (i in 1:pmul){
b.alls0$s0 <- b.alls0$s0 + beta[i]*b.all[,mulcovar[i]]
event.subsx0m[,3] <- event.subsx0m[,3] + beta[i]*d.event[,mulcovar[i]]
}
b.alls0m$s0 <- -b.alls0$s0
#b.alls0$s0 <- exp(b.alls0$s0)
event.subsx0m[,3] <- exp(-event.subsx0m[,3])
s0.t <- function(t){
b.all.sub <- b.alls0[which(b.alls0$cent >= t),]
b.allsub <- matrix(unlist(b.all.sub[,c("id",time,"s0","cent")]),ncol=4)
inter <- .Fortran("inter",ball=as.single(b.allsub),idall=as.single(unique(b.allsub[,1])),dim=as.integer(nrow(b.allsub)), length=as.integer(length(unique(b.allsub[,1]))),t=as.single(t),tau=as.single(tau),yinte=as.single(rep(0,length(unique(b.allsub[,1])))))
out <- mean(exp(inter$yinte))
return(out)}
s0.t <- Vectorize(s0.t)
part11 <- c()
part12 <- matrix(NA, nrow=padd, ncol=padd)
for (i in 1:padd)
{
s1.i.t <- function(t){
b.all.sub <- b.all[which(b.all$cent >= t),]
b.allsub <- matrix(unlist(b.all.sub[,c("id",time,addcovar[i],"cent")]),ncol=4)
inter <- .Fortran("inter",ball=as.single(b.allsub),idall=as.single(unique(b.allsub[,1])),dim=as.integer(nrow(b.allsub)), length=as.integer(length(unique(b.allsub[,1]))),t=as.single(t),tau=as.single(tau),yinte=as.single(rep(0,length(unique(b.allsub[,1])))))
out <- mean(inter$yinte)
return(out)}
s1.i.t <- Vectorize(s1.i.t)
part11.i <- sum(d.event[,addcovar[i]]*event.subsx0m[,3]) - sum(s1.i.t(udt)[which(s0.t(udt)!=0)]/s0.t(udt)[which(s0.t(udt)!=0)]* m1[which(s0.t(udt)!=0)])
part11 <- c(part11, part11.i)
for (j in i:padd)
{
s1.j.t <- function(t){
b.all.sub <- b.all[which(b.all$cent >= t),]
b.allsub <- matrix(unlist(b.all.sub[,c("id",time,addcovar[j],"cent")]),ncol=4)
inter <- .Fortran("inter",ball=as.single(b.allsub),idall=as.single(unique(b.allsub[,1])),dim=as.integer(nrow(b.allsub)), length=as.integer(length(unique(b.allsub[,1]))),t=as.single(t),tau=as.single(tau),yinte=as.single(rep(0,length(unique(b.allsub[,1])))))
out <- mean(inter$yinte)
return(out)}
s1.j.t <- Vectorize(s1.j.t)
s2.ij.t <- function(t){
b.all.sub <- b.all[which(b.all$cent >= t),]
b.allsub1 <- matrix(unlist(b.all.sub[,c("id",time,addcovar[i],"cent")]),ncol=4)
inter1 <- .Fortran("inter",ball=as.single(b.allsub1),idall=as.single(unique(b.allsub1[,1])),dim=as.integer(nrow(b.allsub1)), length=as.integer(length(unique(b.allsub1[,1]))),t=as.single(t),tau=as.single(tau),yinte=as.single(rep(0,length(unique(b.allsub1[,1])))))
b.allsub2 <- matrix(unlist(b.all.sub[,c("id",time,addcovar[j],"cent")]),ncol=4)
inter2 <- .Fortran("inter",ball=as.single(b.allsub2),idall=as.single(unique(b.allsub2[,1])),dim=as.integer(nrow(b.allsub2)), length=as.integer(length(unique(b.allsub2[,1]))),t=as.single(t),tau=as.single(tau),yinte=as.single(rep(0,length(unique(b.allsub2[,1])))))
b.all.sub3 <- b.alls0m[which(b.alls0m$cent >= t),]
b.allsub3 <- matrix(unlist(b.all.sub3[,c("id",time,"s0","cent")]),ncol=4)
inter3 <- .Fortran("inter",ball=as.single(b.allsub3),idall=as.single(unique(b.allsub3[,1])),dim=as.integer(nrow(b.allsub3)), length=as.integer(length(unique(b.allsub3[,1]))),t=as.single(t),tau=as.single(tau),yinte=as.single(rep(0,length(unique(b.allsub3[,1])))))
out <- mean(inter1$yinte*inter2$yinte*exp(inter3$yinte), na.rm=TRUE)
return(out)}
s2.ij.t <- Vectorize(s2.ij.t)
inte.f.ij <- function(t) {
if (s0.t(t)!=0){
u <- (s2.ij.t(t) - s1.i.t(t)*s1.j.t(t)/s0.t(t))
} else {
u <- 0
}
return(u) }
inte.f.ij <- Vectorize(inte.f.ij)
intesum.ij <- (length(inteup))*integrate(f=inte.f.ij, 0, inteup[1], subdivisions =30000L,stop.on.error = FALSE)$value
for (k in 1:(length(inteup)-1)) {
intesum.ij <- intesum.ij + (length(inteup)-k)*integrate(f=inte.f.ij, inteup[k], inteup[k+1], subdivisions =30000L, stop.on.error = FALSE)$value
}
part12[i,j] <- part12[j,i] <- intesum.ij
}
}
part21 <- c()
part22 <- matrix(NA, nrow=pmul, ncol=padd)
for (i in 1:pmul)
{
s1.i.t <- function(t){
b.all.sub1 <- b.all[which(b.all$cent >= t),]
b.allsub1 <- matrix(unlist(b.all.sub1[,c("id",time,mulcovar[i],"cent")]),ncol=4)
inter1 <- .Fortran("inter",ball=as.single(b.allsub1),idall=as.single(unique(b.allsub1[,1])),dim=as.integer(nrow(b.allsub1)), length=as.integer(length(unique(b.allsub1[,1]))),t=as.single(t),tau=as.single(tau),yinte=as.single(rep(0,length(unique(b.allsub1[,1])))))
b.all.sub2 <- b.alls0[which(b.alls0$cent >= t),]
b.allsub2 <- matrix(unlist(b.all.sub2[,c("id",time,"s0","cent")]),ncol=4)
inter2 <- .Fortran("inter",ball=as.single(b.allsub2),idall=as.single(unique(b.allsub2[,1])),dim=as.integer(nrow(b.allsub2)), length=as.integer(length(unique(b.allsub2[,1]))),t=as.single(t),tau=as.single(tau),yinte=as.single(rep(0,length(unique(b.allsub2[,1])))))
out <- mean(inter1$yinte*exp(inter2$yinte), na.rm=TRUE)
return(out)}
s1.i.t <- Vectorize(s1.i.t)
part21.i <- sum(d.event[,mulcovar[i]]) - sum(s1.i.t(udt)[which(s0.t(udt)!=0)]/s0.t(udt)[which(s0.t(udt)!=0)]* m1[which(s0.t(udt)!=0)])
part21 <- c(part21, part21.i)
for (j in 1:padd)
{
s1.j.t <- function(t){
b.all.sub <- b.all[which(b.all$cent >= t),]
b.allsub <- matrix(unlist(b.all.sub[,c("id",time,addcovar[j],"cent")]),ncol=4)
inter <- .Fortran("inter",ball=as.single(b.allsub),idall=as.single(unique(b.allsub[,1])),dim=as.integer(nrow(b.allsub)), length=as.integer(length(unique(b.allsub[,1]))),t=as.single(t),tau=as.single(tau),yinte=as.single(rep(0,length(unique(b.allsub[,1])))))
out <- mean(inter$yinte)
return(out)}
s1.j.t <- Vectorize(s1.j.t)
s2.ij.t <- function(t){
b.all.sub <- b.all[which(b.all$cent >= t),]
b.allsub1 <- matrix(unlist(b.all.sub[,c("id",time,mulcovar[i],"cent")]),ncol=4)
inter1 <- .Fortran("inter",ball=as.single(b.allsub1),idall=as.single(unique(b.allsub1[,1])),dim=as.integer(nrow(b.allsub1)), length=as.integer(length(unique(b.allsub1[,1]))),t=as.single(t),tau=as.single(tau),yinte=as.single(rep(0,length(unique(b.allsub1[,1])))))
b.allsub2 <- matrix(unlist(b.all.sub[,c("id",time,addcovar[j],"cent")]),ncol=4)
inter2 <- .Fortran("inter",ball=as.single(b.allsub2),idall=as.single(unique(b.allsub2[,1])),dim=as.integer(nrow(b.allsub2)), length=as.integer(length(unique(b.allsub2[,1]))),t=as.single(t),tau=as.single(tau),yinte=as.single(rep(0,length(unique(b.allsub2[,1])))))
out <- mean(inter1$yinte*inter2$yinte, na.rm=TRUE)
return(out)}
s2.ij.t <- Vectorize(s2.ij.t)
inte.f.ij <- function(t) {
if (s0.t(t)!=0){
u <- (s2.ij.t(t) - s1.i.t(t)*s1.j.t(t)/s0.t(t))
} else {
u <- 0
}
return(u) }
inte.f.ij <- Vectorize(inte.f.ij)
intesum.ij <- (length(inteup))*integrate(f=inte.f.ij, 0, inteup[1], subdivisions =30000L,stop.on.error = FALSE)$value
for (k in 1:(length(inteup)-1)) {
intesum.ij <- intesum.ij + (length(inteup)-k)*integrate(f=inte.f.ij, inteup[k], inteup[k+1], subdivisions =30000L, stop.on.error = FALSE)$value
}
part22[i,j] <- intesum.ij
}
}
part1 <- part11 - part12 %*% gamma
part2 <- part21 - part22 %*% gamma
res <- t(part1) %*% part1 + t(part2) %*% part2
}
return(res)
}
est_am <- function(formula, d.event, d.regular, method, bandwidth=NULL, low=NULL, up=NULL, tau=NULL)
{
time <- all.vars(formula[[2]])
mulcovar <- all.names(formula[[3]][2])
addcovar <- all.names(formula[[3]][3])
mulcovar <- mulcovar[((length(mulcovar)-1)/2+1):length(mulcovar)]
addcovar <- addcovar[((length(addcovar)-1)/2+1):length(addcovar)]
p <- length(mulcovar) + length(addcovar)
idall <- unique(c(d.event$id, d.regular$id))
N <- length(idall)
if (method=="kernel")
{
regular.sub <- d.regular[which(d.regular[,time]!=0),]
regular.subz1 <- matrix(unlist(regular.sub[,c("id",time,addcovar[1],"cent")]),ncol=4)
if (is.null(bandwidth)){
if (is.null(up)) up <- tau
bandwidth <- select.con_am(regularz1=regular.subz1, low=low, up=up,tau=tau,N=N)*(N^(-1/3))
}
}
re=optim(par=rep(0,p),fn=score_am, formula=formula, d.regular=d.regular, d.event=d.event, est.method=method, bandwidth=bandwidth, low=low, up=up, tau=tau)
est=re$par
conver=re$convergence
if (conver!=0) warning('the estimation does not converge')
return(invisible(list(est=est,model="add-mul", method=method, bandwidth=bandwidth)))
}
select.con_am <- function(regularz1, low, up, tau, N)
{
s1.1.t.cv <- function(data,t,bandwidth){
if (t < bandwidth) {ker <- .Fortran("kernel",bcarr=as.single(data),dim=as.integer(nrow(data)),bandwidth=as.single(bandwidth),tt=as.single(bandwidth),ker=as.single(0))
} else if (t > (tau-bandwidth)) {ker <- .Fortran("kernel",bcarr=as.single(data),dim=as.integer(nrow(data)),bandwidth=as.single(bandwidth),tt=as.single(tau-bandwidth),ker=as.single(0))
} else {ker <- .Fortran("kernel",bcarr=as.single(data),dim=as.integer(nrow(data)),bandwidth=as.single(bandwidth),tt=as.single(t),ker=as.single(0))}
return(ker$ker[1])
}
mse <- function(c,regularz1)
{
cvsum <- 0
ids <- unique(regularz1[,1])
for (i in 1:length(ids))
{
del <- which(regularz1[,1]==ids[i])
if (length(del)>0) {
for (k in 1:length(del))
{
datasub <- matrix(unlist(regularz1[-del,]),ncol=4)
cvsum <- cvsum + (regularz1[del[k],3]-s1.1.t.cv(datasub,regularz1[del[k],2],bandwidth=c*N^(-1/5)))^2
}
}
}
return(cvsum)
}
sel <- optimize(mse, interval=c(low,up),regularz1=regularz1)$minimum
if (abs(sel-up) < 0.1) {
up2 <- up
while (abs(sel-up2) < 0.1)
{
up2 <- up+10
sel <- optimize(mse, interval=c(up,up2),regularz1=regularz1)$minimum
up <- up2
}
}
return(sel)
}
boot_am <- function(formula, d.event, d.regular, nb=50, method, bandwidth, tau=NULL)
{
idall <- unique(c(d.event$id, d.regular$id))
N <- length(idall)
bootest <- NULL
i=1
while (i<=nb){
#print(i)
boot.id <- sample(idall, replace=T)
b.event <- b.regular <- NULL
for(k in 1:N){
if(any(d.event$id == boot.id[k]) ){
foo1 <- d.event[d.event$id == boot.id[k],]
foo1$id <- k
b.event <- rbind( b.event, foo1 )
}
if(any(d.regular$id == boot.id[k]) ){
foo2 <- d.regular[d.regular$id == boot.id[k],]
foo2$id <- k
b.regular <- rbind( b.regular, foo2 )
}
}
invisible(capture.output(est <- est_am(formula=formula, d.event=b.event, d.regular=b.regular, method=method, bandwidth=bandwidth,tau=tau)))
bootest <- rbind(bootest, est[[1]])
i <- i+1
}
bootsd <- apply(bootest, 2, sd)
return(invisible(bootsd))
}
base_am <- function(t, theta, formula, d.event, d.regular, method, bandwidth, tau=NULL)
{
time <- all.vars(formula[[2]])
mulcovar <- all.names(formula[[3]][2])
addcovar <- all.names(formula[[3]][3])
mulcovar <- mulcovar[((length(mulcovar)-1)/2+1):length(mulcovar)]
addcovar <- addcovar[((length(addcovar)-1)/2+1):length(addcovar)]
pmul <- length(mulcovar)
padd <- length(addcovar)
beta <- theta[1:pmul]
gamma <- theta[(pmul+1):(pmul+padd)]
if (t < min(d.event[,time])) {
baseline <- 0 } else {
idall <- unique(c(d.regular$id, d.event$id))
N <- length(idall)
udt <- sort(unique(d.event[,time]))
m1 <- table(d.event[,time])
gt <- function(t){
centall <- c()
for (i in 1:N)
{
centall <- c(centall, unique(c(d.regular[which(d.regular$id==idall[i]),]$cent, d.event[which(d.event$id==idall[i]),]$cent)))
}
sum(t <= centall)
}
gt <- Vectorize(gt)
if (method=="kernel") {
regular.sub <- d.regular[which(d.regular[,time]!=0),]
regular.subz1 <- matrix(unlist(regular.sub[,c("id",time,addcovar[1],"cent")]),ncol=4)
regular.subsx0 <- regular.subz1
regular.subsx0[,3] <- 0
for (i in 1:pmul)
{
regular.subsx0[,3] <- regular.subsx0[,3] + beta[i]*regular.sub[,mulcovar[i]]
}
regular.subsx0[,3] <- exp(regular.subsx0[,3])
s0.t <- function(t){
if (t < bandwidth) {ker <- .Fortran("kernel",bcarr=as.single(regular.subsx0),dim=as.integer(nrow(regular.subsx0)),bandwidth=as.single(bandwidth),tt=as.single(bandwidth),ker=as.single(0))
} else if (t > (tau-bandwidth)) {ker <- .Fortran("kernel",bcarr=as.single(regular.subsx0),dim=as.integer(nrow(regular.subsx0)),bandwidth=as.single(bandwidth),tt=as.single(tau-bandwidth),ker=as.single(0))
} else {ker <- .Fortran("kernel",bcarr=as.single(regular.subsx0),dim=as.integer(nrow(regular.subsx0)),bandwidth=as.single(bandwidth),tt=as.single(t),ker=as.single(0))}
return(ker$ker[1])
}
s0.t <- Vectorize(s0.t)
part1 <- c()
for (i in 1:padd)
{
subzi <- regular.subz1
subzi[,3] <- regular.sub[,addcovar[i]]
s1.i.t <- function(t){
if (t < bandwidth) {ker <- .Fortran("kernel",bcarr=as.single(subzi),dim=as.integer(nrow(subzi)),bandwidth=as.single(bandwidth),tt=as.single(bandwidth),ker=as.single(0))
} else if (t > (tau-bandwidth)) {ker <- .Fortran("kernel",bcarr=as.single(subzi),dim=as.integer(nrow(subzi)),bandwidth=as.single(bandwidth),tt=as.single(tau-bandwidth),ker=as.single(0))
} else {ker <- .Fortran("kernel",bcarr=as.single(subzi),dim=as.integer(nrow(subzi)),bandwidth=as.single(bandwidth),tt=as.single(t),ker=as.single(0))}
return(ker$ker[1])
}
s1.i.t <- Vectorize(s1.i.t)
inte.f.i <- function(t) {
if (s0.t(t)!=0){
u <- s1.i.t(t)/s0.t(t)
} else {
u <- 0 }
return(u) }
inte.f.i <- Vectorize(inte.f.i)
part1 <- c(part1, integrate(f=inte.f.i, 0, t, subdivisions =30000L,stop.on.error = FALSE)$value)
}
udtsub <- sort(unique(d.event[which(d.event[,time]<= t),time]))
m1sub <- table(d.event[which(d.event[,time]<= t),time])
baseline <- sum(1/s0.t(udtsub)[which(s0.t(udtsub)!=0)]/gt(udtsub)[which(s0.t(udtsub)!=0)]*m1sub[which(s0.t(udtsub)!=0)]) - part1 %*% gamma
}
if (method=="ACCF") {
#prepare the data for ACCF
pdata <- NULL
for( k in 1:N){
foo <- NULL
foo1 <- d.regular[d.regular$id==idall[k],]
foo2 <- d.event[d.event$id==idall[k],]
if( nrow(foo1)>0 | nrow(foo2)>0 ){
tallsub <- sort(unique(c(foo1[,time], foo2[,time])))
centime <- unique(foo1$cent)
tallsub <- c(tallsub, max((max(tallsub)+10^(-10)),centime))
foo <- data.frame(cbind(id=idall[k], start=tallsub[-length(tallsub)],
stop=tallsub[-1]))
for (i in 1:pmul)
{
foo[,mulcovar[i]] <- sapply(foo$start,
function(s, t1=foo1[,time], x1=foo1[,mulcovar[i]], t2=foo2[,time],
x2=foo2[,mulcovar[i]]){
if( any(s==t1)){ x1[s==t1]} else { x2[s==t2]} } )
}
for (i in 1:padd)
{
foo[,addcovar[i]] <- sapply(foo$start,
function(s, t1=foo1[,time], x1=foo1[,addcovar[i]], t2=foo2[,time],
x2=foo2[,addcovar[i]]){
if( any(s==t1)){ x1[s==t1]} else { x2[s==t2]} } )
}
pdata <- rbind(pdata, foo)
}
}
pdatas0 <- pdata
pdatas0$s0 <- 0
for (i in 1:pmul){
pdatas0$s0 <- pdatas0$s0 + beta[i]*pdata[,mulcovar[i]]
}
pdatas0$s0 <- exp(pdatas0$s0)
s0.t <- function(t, start=pdatas0$start, stop=pdatas0$stop, x=pdatas0$s0){
mean(x[t>=start & t<stop])}
s0.t <- Vectorize(s0.t)
part1 <- c()
for (i in 1:padd)
{
s1.i.t <- function(t, start=pdata$start, stop=pdata$stop, x=pdata[,addcovar[i]]){
mean(x[t>=start & t<stop])}
s1.i.t <- Vectorize(s1.i.t)
s1.i.t <- Vectorize(s1.i.t)
inte.f.i <- function(t) {
if (s0.t(t)!=0){
u <- s1.i.t(t)/s0.t(t)
} else {
u <- 0 }
return(u) }
inte.f.i <- Vectorize(inte.f.i)
part1 <- c(part1, integrate(f=inte.f.i, 0, t, subdivisions =30000L,stop.on.error = FALSE)$value)
}
udtsub <- sort(unique(d.event[which(d.event[,time]<= t),time]))
m1sub <- table(d.event[which(d.event[,time]<= t),time])
baseline <- sum(1/s0.t(udtsub)[which(s0.t(udtsub)!=0)]/gt(udtsub)[which(s0.t(udtsub)!=0)]*m1sub[which(s0.t(udtsub)!=0)]) - part1 %*% gamma
}
if (method=="interp")
{
b.all <- rbind(d.regular, d.event)
b.all <- b.all[order(b.all[,time]),]
b.all <- b.all[order(b.all$id),]
#estimation
b.alls0 <- b.all
b.alls0$s0 <- 0
for (i in 1:pmul){
b.alls0$s0 <- b.alls0$s0 + beta[i]*b.all[,mulcovar[i]]
}
s0.t <- function(t){
b.all.sub <- b.alls0[which(b.alls0$cent >= t),]
b.allsub <- matrix(unlist(b.all.sub[,c("id",time,"s0","cent")]),ncol=4)
inter <- .Fortran("inter",ball=as.single(b.allsub),idall=as.single(unique(b.allsub[,1])),dim=as.integer(nrow(b.allsub)), length=as.integer(length(unique(b.allsub[,1]))),t=as.single(t),tau=as.single(tau),yinte=as.single(rep(0,length(unique(b.allsub[,1])))))
out <- mean(exp(inter$yinte))
return(out)}
s0.t <- Vectorize(s0.t)
part1 <- c()
for (i in 1:padd)
{
s1.i.t <- function(t){
b.all.sub <- b.all[which(b.all$cent >= t),]
b.allsub <- matrix(unlist(b.all.sub[,c("id",time,addcovar[i],"cent")]),ncol=4)
inter <- .Fortran("inter",ball=as.single(b.allsub),idall=as.single(unique(b.allsub[,1])),dim=as.integer(nrow(b.allsub)), length=as.integer(length(unique(b.allsub[,1]))),t=as.single(t),tau=as.single(tau),yinte=as.single(rep(0,length(unique(b.allsub[,1])))))
out <- mean(inter$yinte)
return(out)}
s1.i.t <- Vectorize(s1.i.t)
inte.f.i <- function(t) {
if (s0.t(t)!=0){
u <- s1.i.t(t)/s0.t(t)
} else {
u <- 0 }
return(u) }
inte.f.i <- Vectorize(inte.f.i)
part1 <- c(part1, integrate(f=inte.f.i, 0, t, subdivisions =30000L,stop.on.error = FALSE)$value)
}
udtsub <- sort(unique(d.event[which(d.event[,time]<= t),time]))
m1sub <- table(d.event[which(d.event[,time]<= t),time])
baseline <- sum(1/s0.t(udtsub)[which(s0.t(udtsub)!=0)]/gt(udtsub)[which(s0.t(udtsub)!=0)]*m1sub[which(s0.t(udtsub)!=0)]) - part1 %*% gamma
}
}
return(invisible(baseline))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.