podkat-package: PODKAT Package

podkat-packageR Documentation

PODKAT Package


This package provides an association test that is capable of dealing with very rare and even private variants. This is accomplished by a kernel-based approach that takes the positions of the variants into account. The test can be used for pre-processed matrix data, but also directly for variant data stored in VCF files. Association testing can be performed whole-genome, whole-exome, or restricted to pre-defined regions of interest. The test is complemented by tools for analyzing and visualizing the results.


The central method of this package is assocTest. It provides several different kernel-based association tests, in particular, the position-dependent kernel association test (PODKAT), but also some variants of the SNP-set kernel association test (SKAT). The test can be run for genotype data given in (sparse) matrix format as well as directly on genotype data stored in a variant call format (VCF) file. In any case, the user has to create a null model by the nullModel function beforehand. Upon completion of an association test, the package also provides methods for filtering, sorting, multiple testing correction, and visualization of results.


Ulrich Bodenhofer




## load genome description

## partition genome into overlapping windows
windows <- partitionRegions(hgA)

## load genotype data from VCF file
vcfFile <- system.file("examples/example1.vcf.gz", package="podkat")
Z <- readGenotypeMatrix(vcfFile)

## read phenotype data from CSV file (continuous trait + covariates)
phenoFile <- system.file("examples/example1lin.csv", package="podkat")
pheno <-read.table(phenoFile, header=TRUE, sep=",")

## train null model with all covariates in data frame 'pheno'
nm.lin <- nullModel(y ~ ., pheno)

## perform association test
res <- assocTest(Z, nm.lin, windows)

## display results
plot(p.adjust(res), which="p.value.adj")

UBod/podkat documentation built on May 5, 2024, 6:37 a.m.