#' @title A function to launch interactive plot using Shiny
#' @description A function to launch interactive line plot.
#' The function arguments include the input dataframe,
#' labels for the plot/axes/legend, and faceting dimensions
#' @param D A quitte format dataframe of IAMC data to produce graph.
#' @param language A string of language for initial plot.
#' Possible values are "en", "jp",
#' "es", "zh-cn", "zh-tw". The default value is "en".
#' @return No return value, called for side effects
#' @importFrom shiny fluidPage titlePanel sidebarLayout sidebarPanel selectInput checkboxInput submitButton mainPanel plotOutput renderPlot validate need shinyApp
#' @importFrom utils head tail
#' @examples
#' \donttest{
#' if (interactive()) {
#' mipplot_interactive_line(ar5_db_sample_data)
#' }
#' }
#' @export
mipplot_interactive_line <- function(D, language = "en") {
model <- period <- NULL
# name_of_input_df is a string such as "ar5_db_sample_data"
# this variable is used for generating R code to reproduce plot
name_of_input_df = as.character(substitute(D))
# check and correct data format if necessary
D <- correct_format_of_iamc_dataframe(D)
region_list <- levels(D$region)
var_list <- levels(D$variable)
model_list <- levels(D$model)
scenario_list <- levels(D$scenario)
period_list <- levels(as.factor(D$period))
ui <- fluidPage(
shinyalert::useShinyalert(),
titlePanel("mipplot"),
sidebarLayout(
sidebarPanel(
selectInput("region", "region:",
choices = c("Choose region" = "", region_list)
),
selectInput("variable", "variable:",
choices = c("Choose variable" = "", var_list)
),
shinyWidgets::pickerInput("model",
label = "model:",
choices = get_model_name_list(D),
multiple = TRUE,
options = list(
`actions-box` = TRUE,
`title` = "Choose model"
)),
shinyWidgets::pickerInput("scenario",
label = "scenario:",
choices = get_scenario_name_list(D),
# selected = get_scenario_name_list(D)[1],
multiple = TRUE,
options = list(
`actions-box` = TRUE,
`title` = "Choose scenario"
)),
shinyWidgets::sliderTextInput(
inputId = "period",
label = "period:",
choices = period_list,
selected = c(head(period_list, n = 1),
tail(period_list, n = 1))
),
shiny::checkboxInput(
inputId = "showLegend",
label = "show legend",
value = TRUE
),
shiny::checkboxInput(
inputId = "printCredit",
label = "print credit",
value = TRUE
),
checkboxInput(
inputId = "rotateYearLabel45Degrees",
label = "roate year label 45 degrees",
value = FALSE),
selectInput("language", "language:",
choices = c(
"Chinese(Simplified)" = "zh-cn",
"Chinese(Traditional)" = "zh-tw",
"English" = "en",
"Japanese" = "jp",
"Spanish" = "es"),
selected = language),
# To disable automatic re-draw,
# we only have to includes submitButton.
shiny::div(
class = "form-group shiny-input-container",
submitButton(text = "Apply Changes", icon = NULL, width = NULL)
),
shiny::div(
class = "form-group shiny-input-container",
style = "color:red;",
shiny::textOutput("warning_message_label")
),
# Show container which shows R code
# to reproduce current plot.
shiny::div(
class = "form-group shiny-input-container",
shiny::tags$label(class="control-label", "code:"),
shiny::tags$pre(
style = "overflow: scroll; max-height: 10em; white-space: pre-line;",
shiny::textOutput(
"code_to_reproduce_plot", inline = TRUE)
)
)
),
mainPanel(
plotOutput("line_plot")
)
)
)
server <- function(input, output) {
output$code_to_reproduce_plot <- shiny::reactive({
generate_code_to_plot_line(input, name_of_input_df)
})
output$line_plot <- renderPlot({
# clear warning message in side panel
output$warning_message_label <- shiny::reactive("")
# Since mipplot_line() function has no arguments to filter
# models and periods to be plotted,
# manually narrow the records in D
# before entering the mipplot_line() function.
D_subset = D %>%
# filter model
dplyr::filter( model %in% input$model ) %>%
# filter period
dplyr::filter(input$period[1] <= period) %>%
dplyr::filter(period <= input$period[2])
# dplyr::filter(input$period_start <= period) %>%
# dplyr::filter(period <= input$period_end)
# plot D_subset instead of D.
withCallingHandlers({
subset_plot <- mipplot_line(D_subset,
variable = input$variable,
scenario = input$scenario,
region = input$region,
legend = input$showLegend,
axis_year_text_angle = ifelse(input$rotateYearLabel45Degrees, 45, 0),
language = input$language)
}, warning = function(e) {
if(grepl("too many scenarios", e$message, fixed=TRUE)) {
shinyalert::shinyalert(
title = "Info",
text = e$message,
closeOnEsc = TRUE,
closeOnClickOutside = TRUE,
html = FALSE,
type = "info",
showConfirmButton = FALSE,
showCancelButton = FALSE,
timer = 2000,
imageUrl = "",
animation = TRUE
)
output$warning_message_label <- shiny::reactive({
e$message
})
}
})
if (input$printCredit) {
subset_plot <- add_credit_to_list_of_plot(subset_plot)
}
# print error message if condition is not given.
validate(
need(
length(input$variable) > 0 && input$variable != "" &&
length(input$region) > 0 && input$region != "" &&
length(input$model) > 0 && input$model != "" &&
length(input$scenario) > 0 && input$scenario != "",
"Please specify plotting options.")
)
# print error message if no plot is plotted.
validate(
need(length(subset_plot) > 0, "can't find any data in this condition")
)
subset_plot
},
height = 400, width = 600
)
}
shinyApp(ui, server);
}
#' @title Get name list of models in IAMC formatted data frame
#' @description select name of models from the column "model" then make unique it.
#' output is character vector such as,
#' c("AIM-Enduse 12.1", "GCAM 3.0", "IMAGE 2.4" )
#' @param D A quitte format dataframe of IAMC data to produce graph.
#' @return A list of strings representing model names
#' @importFrom rlang .data
get_model_name_list <- function(D) {
return (D %>% dplyr::pull(.data$model) %>% unique() %>% levels())
}
#' @title Get name list of scenarios in IAMC formatted data frame
#' @description select name of scenarios from the column "scenario" then make unique it.
#' output is character vector such as,
#' c("EMF27-450-Conv", "EMF27-450-FullTech", "EMF27-450-NoCCS", "EMF27-450-NucOff")
#' @param D A quitte format dataframe of IAMC data to produce graph.
#' @return A list of strings representing scenario names
#' @importFrom rlang .data
get_scenario_name_list <- function(D) {
return (D %>% dplyr::pull(.data$scenario) %>% unique() %>% levels())
}
#' @title generate code to reproduce line plot
#' @description from `input` argument generally used in
#' reactive context in Shiny, this function generates
#' R code to reproduce current plot.
#' This function could not used out of reactive expression in Shiny.
#' @param input it is same as the argument of shiny::ui()
#' this function accesses following attributes:
#' - model
#' - period
#' - variable
#' - scenario
#' - region
#' @param name_of_iamc_data_variable name of IAMC data variable
#' @return R code
generate_code_to_plot_line <- function(input, name_of_iamc_data_variable = "D") {
return(stringr::str_interp(
"data_subset <- ${name_of_iamc_data_variable} %>%
filter( model %in% ${get_string_expression_of_vector_of_strings(input$model)} ) %>%
filter(${input$period[1]} <= period) %>%
filter(period <= ${input$period[2]})
mipplot_line(
data_subset,
variable = ${get_string_expression_of_vector_of_strings(input$variable)},
scenario = ${get_string_expression_of_vector_of_strings(input$scenario)},
region = ${get_string_expression_of_vector_of_strings(input$region)},
legend = ${as.character(input$showLegend)},
axis_year_text_angle = ${ifelse(input$rotateYearLabel45Degrees, 45, 0)},
language = '${input$language}')
"))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.