getBLSGM_TIC_Random <- function(dat, T_records, traj_var, t_var, growth_cov, res_ratio = 4, gv_adjust = 1, rho_gamma = rep(0.3, 3), starts = NA,
loc = 1, scale = 0.25, extraTries = NA, original = T, paraNames = NA){
if (I(original & any(is.na(paraNames)))){
print("Please enter the original parameters if want to obtain them!")
break
}
if (any(is.na(starts))){
dat_traj <- dat[, paste0(traj_var, T_records)]
dat_time <- dat[, paste0(t_var, T_records)]
dat_covariate <- dat[, growth_cov]
### Obtain estimates from the reduced model
reduced_model <- getBLSGM_TIC_Fixed(dat = dat, T_records = T_records, traj_var = traj_var, t_var = t_var, growth_cov = growth_cov,
res_ratio = res_ratio, original = F)
### Obtain knot variance
mean_time <- apply(dat_time, 2, mean)
mug <- reduced_model$mug$values
### Obtain knot variance and path coefficients to knot
mean_time <- apply(dat_time, 2, mean)
mug <- reduced_model$mug$values
for (j in 1:length(mean_time)){
if (mean_time[j] <= mug & mean_time[j + 1] >= mug){
BetaG <- as.numeric(lm(knot ~ ., data = data.frame(cbind(knot = apply(dat_time[, c(j, j + 1)], 1, mean, na.rm = T) * gv_adjust, dat_covariate)),
na.action = na.exclude)$coefficients[-1])
psigg <- var(apply(dat_time[, c(j, j + 1)], 1, mean, na.rm = T)) * gv_adjust -
t(BetaG) %*% diag(apply(dat_covariate, 2, var, na.rm = T)) %*% BetaG
stop
}
}
### Initial values in the original parameter space
mean0 <- c(reduced_model$mean$result, mug)
reduced_psi0 <- reduced_model$psi$result
psi0 <- matrix(c(reduced_psi0[1, ], rho_gamma[1] * sqrt(reduced_psi0[1, 1] * psigg),
reduced_psi0[2, ], rho_gamma[2] * sqrt(reduced_psi0[2, 2] * psigg),
reduced_psi0[3, ], rho_gamma[3] * sqrt(reduced_psi0[3, 3] * psigg),
rho_gamma[1] * sqrt(reduced_psi0[1, 1] * psigg), rho_gamma[2] * sqrt(reduced_psi0[2, 2] * psigg),
rho_gamma[3] * sqrt(reduced_psi0[3, 3] * psigg), psigg), nrow = 4)
beta0 <- matrix(c(reduced_model$beta$result[1, ], reduced_model$beta$result[2, ],
reduced_model$beta$result[3, ], BetaG), nrow = 4, byrow = T)
### Transformed matrices obtained by multivariate Delta method
#### For mean vector
func0 <- matrix(c(1, mean0[4], 0, 0,
0, 0.5, 0.5, 0,
0, -0.5, 0.5, 0,
0, 0, 0, 1), nrow = 4, byrow = T)
#### For var-cov matrix
grad0 <- matrix(c(1, mean0[4], 0, mean0[2],
0, 0.5, 0.5, 0,
0, -0.5, 0.5, 0,
0, 0, 0, 1), nrow = 4, byrow = T)
mean0.s <- func0[1:3, 1:3] %*% mean0[1:3]
psi0.s <- grad0 %*% psi0 %*% t(grad0)
beta.s <- grad0 %*% beta0
starts.y <- c(mean0.s[1:3], mean0[4], psi0.s[row(psi0.s) >= col(psi0.s)], reduced_model$S$values[1, 1])
starts.x <- c(apply(dat_covariate, 2, mean, na.rm = T),
var(dat_covariate)[row(var(dat_covariate)) >= col(var(dat_covariate))])
starts.beta <- c(beta.s[1, ], beta.s[2, ], beta.s[3, ], beta.s[4, ])
starts <- list(starts.y, starts.x, starts.beta)
}
### Define manifest variables
manifests <- paste0(traj_var, T_records)
### Define latent variables
latents <- c("eta0s", "eta1s", "eta2s", "delta")
outDef <- list(); outLoads1 <- list(); outLoads2 <- list(); outLoads3 <- list()
for(j in T_records){
outDef[[j]] <- mxMatrix("Full", 1, 1, free = F, labels = paste0("data.", t_var, j), name = paste0("t", j))
outLoads1[[j]] <- mxAlgebraFromString(paste0("t", j, " - mug"), name = paste0("L1", j))
outLoads2[[j]] <- mxAlgebraFromString(paste0("abs(t", j, " - mug)"), name = paste0("L2", j))
outLoads3[[j]] <- mxAlgebraFromString(paste0("-mueta2s * (t", j, " - mug)/abs(t", j,
" - mug) - mueta2s"), name = paste0("L3", j))
}
### Create a mxModel object
model_mx <- mxModel("Bilinear Spline Growth Model with a Random Knot and Growth Covariates", type = "RAM",
manifestVars = c(manifests, growth_cov), latentVars = latents,
mxData(observed = dat, type = "raw"),
#### Define factor loadings from latent variables to manifests
mxPath(from = "eta0s", to = manifests, arrows = 1, free = F, values = 1),
mxPath(from = "eta1s", to = manifests, arrows = 1, free = F, values = 0,
labels = paste0("L1", T_records, "[1,1]")),
mxPath(from = "eta2s", to = manifests, arrows = 1, free = F, values = 0,
labels = paste0("L2", T_records, "[1,1]")),
mxPath(from = "delta", to = manifests, arrows = 1, free = F, values = 0,
labels = paste0("L3", T_records, "[1,1]")),
#### Define the variances of residuals
mxPath(from = manifests, to = manifests, arrows = 2, free = T, values = starts[[1]][15],
labels = "residuals"),
#### Define means of latent variables
mxPath(from = "one", to = latents[1:3], arrows = 1, free = T, values = starts[[1]][1:3],
labels = c("mueta0s", "mueta1s", "mueta2s")),
#### Define var-cov matrix of latent variables
mxPath(from = latents, to = latents, arrows = 2,
connect = "unique.pairs", free = T,
values = starts[[1]][5:14],
labels = c("psi0s0s", "psi0s1s", "psi0s2s", "psi0sg", "psi1s1s",
"psi1s2s", "psi1sg", "psi2s2s", "psi2sg", "psigg")),
#### Add additional parameter and constraints
mxMatrix("Full", 1, 1, free = T, values = starts[[1]][4],
labels = "muknot", name = "mug"),
#### Include time-invariant covariates
##### Means
mxPath(from = "one", to = growth_cov, arrows = 1, free = T,
values = starts[[2]][1:length(growth_cov)], labels = paste0("mux", 1:length(growth_cov))),
mxPath(from = growth_cov, to = growth_cov, connect = "unique.pairs",
arrows = 2, free = T,
values = starts[[2]][-1:-length(growth_cov)],
labels = paste0("phi", 1:(length(growth_cov) * (length(growth_cov) + 1)/2))),
##### Regression coefficients
mxPath(from = growth_cov, to = latents[1], arrows = 1, free = T,
values = starts[[3]][1:length(growth_cov)],
labels = paste0("beta0", 1:length(growth_cov))),
mxPath(from = growth_cov, to = latents[2], arrows = 1, free = T,
values = starts[[3]][(2 + 1):(2 + length(growth_cov))],
labels = paste0("beta1", 1:length(growth_cov))),
mxPath(from = growth_cov, to = latents[3], arrows = 1, free = T,
values = starts[[3]][(2 * 2 + 1):(2 * 2 + length(growth_cov))],
labels = paste0("beta2", 1:length(growth_cov))),
mxPath(from = growth_cov, to = latents[4], arrows = 1, free = T,
values = starts[[3]][(3 * 2 + 1):(3 * 2 + length(growth_cov))],
labels = paste0("betaG", 1:length(growth_cov))),
outDef, outLoads1, outLoads2, outLoads3,
mxAlgebra(rbind(mueta0s, mueta1s, mueta2s, mug), name = "mean_s"),
mxAlgebra(rbind(cbind(psi0s0s, psi0s1s, psi0s2s, psi0sg),
cbind(psi0s1s, psi1s1s, psi1s2s, psi1sg),
cbind(psi0s2s, psi1s2s, psi2s2s, psi2sg),
cbind(psi0sg, psi1sg, psi2sg, psigg)), name = "psi_s"),
mxMatrix("Full", 4, length(growth_cov), free = T, values = starts[[3]],
labels = c(paste0("beta0", 1:length(growth_cov)),
paste0("beta1", 1:length(growth_cov)),
paste0("beta2", 1:length(growth_cov)),
paste0("betaG", 1:length(growth_cov))), byrow = T, name = "beta_s"),
mxMatrix("Full", 1, length(growth_cov), free = T, values = starts[[2]][1:length(growth_cov)],
labels = paste0("mux", 1:length(growth_cov)), byrow = T, name = "BL_mean"),
mxAlgebra(rbind(cbind(1, -mug, mug, 0),
cbind(0, 1, -1, 0),
cbind(0, 1, 1, 0),
cbind(0, 0, 0, 1)), name = "func"),
mxAlgebra(rbind(cbind(1, -mug, mug, 0),
cbind(0, 1, -1, 0),
cbind(0, 1, 1, 0),
cbind(0, 0, 0, 1)), name = "grad"),
mxAlgebra(func %*% (mean_s + beta_s %*% t(BL_mean)), name = "mean"),
mxAlgebra(grad %*% psi_s %*% t(grad), name = "psi"),
mxAlgebra(grad %*% beta_s, name = "beta"))
if (!is.na(extraTries)){
model <- mxTryHard(model_mx, extraTries = extraTries, OKstatuscodes = 0, loc = loc, scale = scale)
}
else{
model <- mxRun(model_mx)
}
if(original){
model.para <- summary(model)$parameters[, c(1, 5, 6)]
model.est <- round(c(model$mean$result,
model$psi$result[row(model$psi$result) >= col(model$psi$result)],
c(model$beta$result),
model.para[grep("mux", model.para$name), 2],
model.para[grep("phi", model.para$name), 2],
model.para[model.para$name == "residuals", 2]), 4)
mean.se <- mxSE(mean, model)
psi.se <- mxSE(psi, model)
beta.se <- mxSE(beta, model)
model.se <- round(c(mean.se,
psi.se[row(psi.se) >= col(psi.se)], c(beta.se),
model.para[grep("mux", model.para$name), 3],
model.para[grep("phi", model.para$name), 3],
model.para[model.para$name == "residuals", 3]), 4)
estimate_out <- data.frame(Name = paraNames, Estimate = model.est, SE = model.se)
return(list(model, estimate_out))
}
else{
return(model)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.