# Copyright (c) 2018 - 2020 Wenyu Chen [wenyuc@uw.edu]
# All rights reserved. See the file COPYING for license terms.
###############
### Main method with high-dimensional bottom-up CLIME approach
###############
#' Estimate topological ordering and DAG using high dimensional bottom-up CLIME approach
#' Estimate DAG using topological ordering
#' @param X,Y: n x p and 1 x p matrix
#' @param alpha: desired selection significance level
#' @param mtd: methods for learning DAG from topological orderings.
#' "ztest": (p<n) [Multiple Testing and Error Control in Gaussian Graphical Model Selection. Drton and Perlman.2007]
#' "rls": (p<n) fit recursive least squares using ggm package and threshold the regression coefs
#' "chol": (p<n) perform cholesky decomposition and threshold the regression coefs
#' "dlasso": debiased lasso (default with FCD=True and precmtd="sqrtlasso");
#' "lasso": lasso with fixed lambda from [Penalized likelihood methods for estimation of sparse high-dimensional directed acyclic graphs. Shojaie and Michailidis. 2010];
#' "adalasso": adaptive lasso with fixed lambda from [Shojaie and Michailidis. 2010];
#' "cvlasso": cross-validated lasso from glmnet;
#' "scallasso": scaled lasso.
#' @param threshold: for rls and chol, the threshold level.
#' @param FCD: for debiased lasso, use the FCD procedure [False Discovery Rate Control via Debiased Lasso. Javanmard and Montanari. 2018]
#' or use individual tests to select support.
#' @param precmtd: for debiased lasso, how to compute debiasing matrix
#' "cv": node-wise lasso w/ joint 10 fold cv
#' "sqrtlasso": square-root lasso (no tune, default)
#' @return Adjacency matrix with ADJ[i,j]!=0 iff i->j, and topological ordering
#' @examples
#' X1<-rnorm(100)
#' X2<-X1+rnorm(100)
#' EqVarDAG_HD_TD(cbind(X1,X2),2)
#'
#' #$adj
#' #[,1] [,2]
#' #[1,] 0 1
#' #[2,] 0 0
#' #
#' #$TO
#' #[1] 1 2
EqVarDAG_HD_CLIME<-function(X,mtd="dlasso",alpha=0.05,
threshold=1e-1,FCD=TRUE,precmtd="sqrtlasso"){
# Input
# X : n by p matrix of data
# cv: if true, use cv-ed lambda, else use lambdafix,default True
# lambdafix: customized lambda, default 0.1
# Output
# adj: estimated adjacency matrix
# TO : estimated topological ordering
n<-dim(X)[1]
p<-dim(X)[2]
TO=EqVarDAG_HD_CLIME_internal(X,NULL)
adj=DAG_from_Ordering(X,TO,mtd,alpha,threshold,FCD,precmtd)
return(list(adj=adj,TO=TO))
}
###############
### helper functions
###############
EqVarDAG_HD_CLIME_internal<-function(X,lam=NULL){
# (i,j)=1 in fixedorder means i is ancestral to j
n=dim(X)[1]
p=dim(X)[2]
Sigma=cov(X)
if (is.null(lam)){lam = 4/sqrt(n)*sqrt(log(p/sqrt(0.05)))}
Theta=clime_theta(X)
TO=NULL
while (length(TO)<p-1){
sink=which.min(diag(Theta))
TO=c(TO,sink)
s = setdiff(which(Theta[,sink]!=0),sink)
for (j in s){
sj = unique(c(j,setdiff(which(Theta[,j]!=0),sink),s))
if (length(sj)==1){
Theta[j,sj]=Theta[sj,j]=1/Sigma[sj,sj]
} else {
Theta[j,sj]=Theta[sj,j]=clime_lp(Sigma[sj,sj],lam,1)
}
}
Theta[,sink]=Theta[sink,]=rep(0,p)
Theta[sink,sink]=Inf
}
return(rev(unname(c(TO,setdiff(seq(p),TO)))))
}
# clime utilities
unit_vec<-function(p,i){v=rep(0,p);v[i]=1;return(v)}
clime_lp<-function(Sigma,lam,j){
# Sigma: cov(X)
# lam: tuning parameter
# j: the j-th problem
p = dim(Sigma)[2]
f.obj = rep(1,p*2) # sum (u+v), u=max(x,0), v=max(-x,0), x=u-v
const.mat = rbind(
cbind(Sigma,-Sigma), # Sigma*(u-v) >= lam +ej
cbind(-Sigma,Sigma), # -Sigma*(u-v) >= lam-ej
cbind(diag(p),matrix(0,p,p)), # u>0
cbind(matrix(0,p,p),diag(p)) # v>0
)
const.dir = c(
rep("<=",2*p),rep(">=",2*p)
)
const.rhs = c(
rep(lam,p)+unit_vec(p,j),
rep(lam,p)-unit_vec(p,j),
rep(0,2*p)
)
lpout=lpSolve::lp(direction = "min",objective.in = f.obj,
const.mat = const.mat,const.dir = const.dir,
const.rhs = const.rhs)
return(lpout$solution[1:p]-lpout$solution[(p+1):(2*p)])
}
clime_theta<-function(X,lam=NULL){
p=dim(X)[2]
n=dim(X)[1]
Sigma = cov(X)
if (is.null(lam)){lam = 4/sqrt(n)*sqrt(log(p/sqrt(0.05)))}
Omega = sapply(1:p, function(i)clime_lp(Sigma,lam,i))
Omega = (abs(Omega)<=abs(t(Omega)))*Omega+
(abs(Omega)>abs(t(Omega)))*t(Omega)
return(Omega)
}
cv_clime<-function(X){
p=dim(X)[2]
n=dim(X)[1]
Sigma = cov(X)
ws = sqrt(diag(Sigma))
lams=exp(seq(log(1e-4),log(0.8),length.out = 100))
ebics=sapply(1:100, function(j){
Theta = sapply(1:p, function(i)clime_lp(Sigma,lams[j],i))
Theta = (abs(Theta)<=abs(t(Theta)))*Theta+
(abs(Theta)>abs(t(Theta)))*t(Theta)
loglikGGM(S=Sigma,Theta=Theta)-sum(Theta!=0)/2*(log(p)+0.5*log(n))/n
})
return(clime_theta(X,lam = lams[which.max(ebics)]))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.