#' High-quality feature selection
#' @description
#' Select high-quality features for quantitative analysis.
#'
#' @param FeatureTable Data frame with features in row and samples in column (default).
#' @param BlankFilter A numeric value. High-quality when mean(sample intensities) > mean(blank intensities) * \code{BlankFilter}
#' @param RtRange A numeric vector indicating the range of the defined retention time window, in minute.
#' @param QCRSD A numeric value indicating the relative standard deviation threshold for QC samples.
#' @param SQCcor A numeric value indicating the Pearson's correlation threshold for serial QC samples (recommend: 0.8-0.9).
#' @param SampleInCol \code{TRUE} if samples are in column. \code{FALSE} if samples are in row.
#' @param output \code{TRUE} will output the result table in current working directory
#' @param IntThreshold A numeric value indicating the feature intensity threshold. Feature is detected when its intensity larger than this value.
#'
#' @details
#' \code{FeatureTable} contains measured signal intensities of metabolic features,
#' with features in row and samples in column (default). The column names should
#' be sample names, and the first row should be sample group names (e.g. control, case).\cr
#' The first column should be unique feature identifiers.
#' For group names, please use: \cr
#' "RT" for retention time column; \cr
#' "QC" for quality control samples between real samples (normal QC samples); \cr
#' "blank" for blank samples; \cr
#' "SQC_###" for serial QC samples with a certain loading amount.
#' For example, SQC_1.0 means a serial QC sample with injection volume of 1.0 uL. \cr
#' An example of \code{FeatureTable} is provided as \code{TestingData} in this package.
#' @export
#' @return
#' This function will return the original data frame with an extra column
#' named "Quality" to indicate the feature quality.
#' @references Yu, Huaxu, and Tao Huan. "MAFFIN: Metabolomics Sample Normalization
#' Using Maximal Density Fold Change with High-Quality Metabolic Features and Corrected
#' Signal Intensities." \emph{bioRxiv} (2021).
#' @examples
#' selectedTable = FeatureSelection(TestingData)
FeatureSelection = function(FeatureTable, BlankFilter=2, RtRange=c(0,100),
QCRSD=0.25, SQCcor=0.9, IntThreshold=0,
SampleInCol=TRUE, output=FALSE){
message("Selecting high-quality features...")
# Transpose FeatureTable if samples are in row
if (!SampleInCol) {
FeatureTable = t(FeatureTable)
}
filter.blank = filter.RT = filter.QC = filter.SQC = TRUE
# Find names of sample groups
group_seq = tolower(as.character(FeatureTable[1,-1]))
group_unique = unique(group_seq)
# Convert feature intensities to numeric values
# Remove the first row and column for downstream processing
IntTable = FeatureTable[-1,-1]
# Test if all cells in IntTable are numeric
IntTable = tryCatch(sapply(IntTable, as.numeric),warning=function(w) w)
if(is(IntTable,"warning")){
print("Non-numeric value is found in feature intensities. Return NA.")
return(NA)
}
# Generate a data frame to store the filtering results. 1 for pass, 0 for fail.
# column 1: feature identifier
# column 2: method blank filter result
# column 3: retention time filter result
# column 4: RSD in QC sample filter result
# column 5: QC linearity filter result
derep_table = data.frame(matrix(data = TRUE, nrow = nrow(IntTable), ncol = 5))
colnames(derep_table) = c("Identifier", "MB", "RT", "QC_RSD", "Pearson_cor")
derep_table[,1] = FeatureTable[-1,1]
# Calculate the average intensity from all blank samples
blank_v = c()
temp = group_seq=="blank"
if(sum(temp) == 0){
filter.blank = FALSE
message("Blank data are not detected.")
} else {
blank_v = rowMeans(data.matrix(IntTable[, temp]))
}
# Find the column of retention times
RT_v = c()
temp = group_seq=="rt"
if (sum(temp) == 0) {
filter.RT = FALSE
message("Retention time data are not detected.")
} else {
RT_v = data.matrix(IntTable[, temp])
}
# Calculate the relative standard deviation from normal QC samples
QC_RSD_v = c()
temp = group_seq=="qc"
if(sum(temp) == 0){
filter.QC = FALSE
message("QC data are not detected.")
} else if (sum(temp) < 3) {
filter.QC = FALSE
message("QC data are not enough to calculate RSD (3 is required).")
} else {
for (i in 1:nrow(IntTable)) {
QC_RSD_v[i] = sd(IntTable[i, temp]) / mean(IntTable[i, temp])
if (is.na(QC_RSD_v[i])) {
QC_RSD_v[i] = 0
}
}
}
# Find intensities for serial QC samples
SQC_index = grep("SQC", group_unique, ignore.case = T)
if(length(SQC_index) == 0){
filter.SQC = FALSE
message("Serial QC data are not detected.")
} else if(length(SQC_index) < 5){
filter.SQC = FALSE
message("Serial QC data points are too less for evaluation (5 is required).")
} else{
SQC_table = data.frame(matrix(nrow = nrow(IntTable), ncol = length(SQC_index)))
colnames(SQC_table) = group_unique[SQC_index]
QC_conc = c()
SQC.list = stringr::str_split(colnames(SQC_table), pattern = "_")
for (i in 1:ncol(SQC_table)) {
QC_conc[i] = as.numeric(SQC.list[[i]][2])
}
for (i in 1:length(SQC_index)) {
SQC_table[,i] = rowMeans(data.frame(IntTable[,group_seq == group_unique[SQC_index[i]]]))
}
}
# Calculate the average intensity from real samples
temp = group_seq=="qc" | grepl("SQC", group_seq,ignore.case = T) | group_seq=="blank" | group_seq=="rt"
sample_v = rowMeans(data.matrix(IntTable[, !temp]))
# Remove the features in blank
if (filter.blank) {
derep_table[,2] = sample_v > blank_v*BlankFilter
}
# Remove the features out of the defined retention time range
if (filter.RT) {
derep_table[,3] = RT_v > RtRange[1] & RT_v < RtRange[2]
}
# Remove the features with low RSD in QC samples
if (filter.QC) {
derep_table[,4] = QC_RSD_v < QCRSD
}
# Remove the features with low correlation in SQC samples
if (filter.SQC) {
for (i in 1:nrow(IntTable)) {
# Check serial diluted QC linearity
QC_int = as.numeric(SQC_table[i,])
valid_int = which(QC_int > IntThreshold)
QC_int = QC_int[valid_int]
selected_QC_conc = QC_conc[valid_int]
selected_int_points = length(selected_QC_conc)
if(selected_int_points > 3){
if (cor(QC_int, selected_QC_conc) > SQCcor) {
derep_table[i,5] = TRUE
} else {
derep_table[i,5] = FALSE
}
} else {
derep_table[i,5] = FALSE
}
}
}
FeatureTable$Quality = ""
FeatureTable$Quality[1] = "FeatureQuality"
reasons = c("Blank", "RT", "LowRSD", "LowCor")
for (i in 1:nrow(derep_table)) {
if (sum(derep_table[i,-1]) == 4) {
FeatureTable$Quality[i+1] = "high"
} else {
temp = paste(reasons[!derep_table[i,-1]], collapse=", ")
FeatureTable$Quality[i+1] = paste("low | ", temp)
}
}
if (output) {
write.csv(FeatureTable, "Feature_selection.csv", row.names = FALSE)
}
message("High-quality feature selection is done.")
message(paste0(sum(FeatureTable$Quality[-1]=="high"), " features are selected from ", nrow(IntTable), "."))
return(FeatureTable)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.