#' Internal function of simulation
#' @title sim_core_mutualism
#'
#' @description
#' This internal function runs a Monte Carlo simulation to model the dynamics of mutualistic relationships
#' between plant and animal species on the island. The simulation tracks species interactions over time
#' based on defined parameters and generates an island state table reflecting species composition,
#' colonization events, and other relevant metrics.
#' The function requires a set of parameters (`mutualism_pars`) that define the initial conditions and rules
#' governing interactions, such as colonization rates and species dynamics. It returns a comprehensive
#' list containing the final state of the island, including species status, interaction matrices,
#' and an evolution table documenting significant events throughout the simulation.
#'
#' @param total_time Numeric. Total time for the simulation.
#' @param mutualism_pars List. Parameters used in the simulation.
#' @param return_parts Character. Specifies which part of the result to return. Options are:
#' - `"island_parts"` (default): Returns only the core simulation results, including the following elements:
#' - `Mt`: A matrix representing the "false" matrix on the island, including extinct and non-immigrated species occupying
#' their original indices from the mainland.
#' - `M_true_list`: A list of "true" matrices left on the island (every certain ages).
#' - `status_p`: A one column matrix indicating the presence of the plant species
#' on the island (Presence (1) or absence (0)).
#' - `status_a`: A one column matrix indicating the presence of the animal species
#' on the island (Presence (1) or absence (0)).
#' - `island_spec`: DAISIE-alike data frame. A table showing the evolutionary trajectory of species on the island, including their colonization
#' and branching details.
#' - `island`: DAISIE-alike island information. A list containing three components: `stt_table`, `clades_info_plant`, and `clades_info_animal`.
#' - `evo_table`: A data frame summarizing the evolutionary history of the species, including branching times and other evolutionary metrics.
#' - `"additional_parts"`: Returns only additional information,for checking the rates and species richness. It contains:
#' - `rates_list`: A list containing all types of rates
#' - `timeval_list`: A list containing all values of time
#' - `richness_p_list`: A list containing all plant richness on the island across simulation time
#' - `richness_a_list`: A list containing all animal richness on the island across simulation time
#'
#' @return A list
sim_core_mutualism <- function(total_time, mutualism_pars, return_parts) {
if (return_parts == "island_parts") {
#### Initialization ####
# Validate the structure of `mutualism_pars`
testit::assert(are_mutualism_pars(mutualism_pars))
# Initialize varaibles
timeval <- 0
M0 <- mutualism_pars$M0
Mt <- M0
alpha <- mutualism_pars$alpha
maxplantID <- nrow(M0)
maxanimalID <- ncol(M0)
status_p <- matrix(0, nrow = nrow(M0), ncol = 1)
status_a <- matrix(0, nrow = ncol(M0), ncol = 1)
island_spec <- c()
stt_table <- matrix(ncol = 7)
# species through time table, `~p` stands for plant species, `~a` animal species
colnames(stt_table) <- c("Time", "nIp", "nAp", "nCp", "nIa", "nAa", "nCa")
stt_table[1, ] <- c(total_time, 0, 0, 0, 0, 0, 0)
# Extract parameters
lac_pars <- mutualism_pars$lac_pars
mu_pars <- mutualism_pars$mu_pars
K_pars <- mutualism_pars$K_pars
gam_pars <- mutualism_pars$gam_pars
laa_pars <- mutualism_pars$laa_pars
qgain <- mutualism_pars$qgain
qloss <- mutualism_pars$qloss
lambda0 <- mutualism_pars$lambda0
transprob <- mutualism_pars$transprob
M_true_list <- list()
measure_interval <- 0.5
measure_time <- measure_interval
if (sum(gam_pars) == 0) {
stop("Island has no species and the rate of
colonisation is zero. Island cannot be colonised.")
}
# Initialize evolution table
evo_table <- data.frame(Time = numeric(0), Event_id = numeric(0))
#### Start Monte Carlo iterations ####
while (timeval < total_time) {
partners_list <- get_partners(
Mt = Mt,
status_p = status_p,
status_a = status_a
)
rates <- update_rates_mutual(
M0 = M0,
Mt = Mt,
alpha = alpha,
status_p = status_p,
status_a = status_a,
lac_pars = lac_pars,
mu_pars = mu_pars,
K_pars = K_pars,
gam_pars = gam_pars,
laa_pars = laa_pars,
qgain = qgain,
qloss = qloss,
lambda0 = lambda0,
transprob = transprob,
partners_list = partners_list,
island_spec = island_spec
)
testit::assert(are_rates(rates))
# Determine next time step
timeval_and_dt <- sample_time_mutual(rates = rates, timeval = timeval)
timeval <- timeval_and_dt$timeval
# Store matrix on island every 0.5 time step
if (timeval > measure_time &&
timeval - timeval_and_dt$dt < measure_time) {
M_true <- Mt[which(status_p == 1), which(status_a == 1), drop = FALSE]
store_index <- floor(timeval / measure_interval)
M_true_list[[store_index]] <- M_true
measure_time <- (store_index + 1) * measure_interval
}
if (timeval <= total_time) {
# Select next event
possible_event <- sample_event_mutual(rates = rates)
# Update evo_table
new_row <- data.frame(Time = total_time - timeval, Event_id = possible_event) # Name columns explicitly
evo_table <- rbind(evo_table, new_row)
# Update states based on the selected event
updated_states <- update_states_mutual(
M0 = M0,
Mt = Mt,
status_p = status_p,
status_a = status_a,
maxplantID = maxplantID,
maxanimalID = maxanimalID,
timeval = timeval,
total_time = total_time,
rates = rates,
possible_event = possible_event,
island_spec = island_spec,
stt_table = stt_table,
transprob = transprob
)
Mt <- updated_states$Mt
status_p <- updated_states$status_p
status_a <- updated_states$status_a
maxplantID <- updated_states$maxplantID
maxanimalID <- updated_states$maxanimalID
island_spec <- updated_states$island_spec
stt_table <- updated_states$stt_table
}
}
#### Finalize STT ####
stt_table <- rbind(
stt_table,
c(0, stt_table[nrow(stt_table), 2:7])
)
#### Finalize island_spec ####
if (length(island_spec) != 0) {
cnames <- c(
"Species",
"Mainland Ancestor",
"Colonisation time (BP)",
"Species type",
"branch_code",
"branching time (BP)",
"Anagenetic_origin",
"Species state"
)
colnames(island_spec) <- cnames
# Adjust ages counting backward from present
island_spec[, "branching time (BP)"] <- total_time -
as.numeric(island_spec[, "branching time (BP)"])
island_spec[, "Colonisation time (BP)"] <- total_time -
as.numeric(island_spec[, "Colonisation time (BP)"])
}
island <- create_island_mutual(
stt_table = stt_table,
total_time = total_time,
island_spec = island_spec
)
return(list(
Mt = Mt,
M_true_list = M_true_list,
status_p = status_p,
status_a = status_a,
island_spec = island_spec,
island = island,
evo_table = evo_table
))
}
if(return_parts == "additional_parts") {
# Initialize varaibles
timeval <- 0
M0 <- mutualism_pars$M0
Mt <- M0
alpha <- mutualism_pars$alpha
maxplantID <- nrow(M0)
maxanimalID <- ncol(M0)
status_p <- matrix(0, nrow = nrow(M0), ncol = 1)
status_a <- matrix(0, nrow = ncol(M0), ncol = 1)
island_spec <- c()
stt_table <- matrix(ncol = 7)
# species through time table, `~p` stands for plant species, `~a` animal species
colnames(stt_table) <- c("Time", "nIp", "nAp", "nCp", "nIa", "nAa", "nCa")
stt_table[1, ] <- c(total_time, 0, 0, 0, 0, 0, 0)
# Extract parameters
lac_pars <- mutualism_pars$lac_pars
mu_pars <- mutualism_pars$mu_pars
K_pars <- mutualism_pars$K_pars
gam_pars <- mutualism_pars$gam_pars
laa_pars <- mutualism_pars$laa_pars
qgain <- mutualism_pars$qgain
qloss <- mutualism_pars$qloss
lambda0 <- mutualism_pars$lambda0
transprob <- mutualism_pars$transprob
rates_list <- list()
timeval_list <- list()
richness_p_list <- list()
richness_a_list <- list()
#sum_partners_p <- list()
#sum_partners_a <- list()
# Start Monte Carlo iterations
while (timeval < total_time) {
partners_list <- get_partners(
Mt = Mt,
status_p = status_p,
status_a = status_a
)
#sum_partners_p[[length(sum_partners_p) + 1]] <- sum(partners_list$partners_p)
#sum_partners_a[[length(sum_partners_a) + 1]] <- sum(partners_list$partners_a)
rates <- update_rates_mutual(
M0 = M0,
Mt = Mt,
alpha = alpha,
status_p = status_p,
status_a = status_a,
lac_pars = lac_pars,
mu_pars = mu_pars,
K_pars = K_pars,
gam_pars = gam_pars,
laa_pars = laa_pars,
qgain = qgain,
qloss = qloss,
lambda0 = lambda0,
transprob = transprob,
partners_list = partners_list,
island_spec = island_spec
)
# Save rates list
rates_list[[length(rates_list) + 1 ]] <- rates
# Determine next time step
timeval_and_dt <- sample_time_mutual(rates = rates, timeval = timeval)
timeval <- timeval_and_dt$timeval
# Save time values
timeval_list[[length(timeval_list) + 1]] <- timeval
if (timeval <= total_time){
# Select next event
possible_event <- sample_event_mutual(rates = rates)
# Update states based on the selected event
updated_states <- update_states_mutual(
M0 = M0,
Mt = Mt,
status_p = status_p,
status_a = status_a,
maxplantID = maxplantID,
maxanimalID = maxanimalID,
timeval = timeval,
total_time = total_time,
rates = rates,
possible_event = possible_event,
island_spec = island_spec,
stt_table = stt_table,
transprob = transprob
)
Mt <- updated_states$Mt
status_p <- updated_states$status_p
status_a <- updated_states$status_a
maxplantID <- updated_states$maxplantID
maxanimalID <- updated_states$maxanimalID
island_spec <- updated_states$island_spec
stt_table <- updated_states$stt_table
# Save richness for plants and animals
richness_p_list[[length(richness_p_list) + 1]] <- sum(status_p)
richness_a_list[[length(richness_a_list) + 1]] <- sum(status_a)
}
}
return(list(rates_list = rates_list,
timeval_list = timeval_list,
richness_p_list = richness_p_list,
richness_a_list = richness_a_list))
#sum_partners_p = sum_partners_p,
#sum_partners_a = sum_partners_a))
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.