Description Usage Arguments Value Examples
This function can generate multiple data sets of mixed data types. Details of the simultion process can be found in the paper https://arxiv.org/abs/1902.06241. In this function, only the element-wise sparsity is included into the loading matrix.
1 2 3 | dataSimu_element_sparse(n, ds, R = 3, dataTypes = "GGG",
noises = rep(1, 3), margProb = 0.1, sparse_ratio = 0.5,
SNRs = rep(1, 3))
|
n |
the number of objects |
ds |
a vector for the number of variables in each data set |
R |
the number of simulated PCs |
dataTypes |
a string indicates the data type of each data set, possible options include 'G': Gaussian, 'B': Bernoulli. |
noises |
noise levels of simulated data sets |
margProb |
desired marginal probability for binary data simulation, used to simulate imbalanced binary data. |
sparse_ratio |
controls the sparse level of element-wise sparsity |
SNRs |
the SNRs for the simulation of the multiple data sets |
Refer the return of thefunction dataSimu_group_sparse
.
1 2 3 4 5 6 7 8 | ## Not run:
dataSimulation <- dataSimu_element_sparse(n,ds,R,
dataTypes='GGG',
noises=rep(1,3),
margProb=0.1,sparse_ratio=0.5,
SNRs=rep(1,3))
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.