dataSimu_group_sparse: Simulate multiple data sets with group and element-wise...

Description Usage Arguments Value Examples

Description

This function can generate multiple data sets of mixed data types. Details of the simultion process can be found in the paper https://arxiv.org/abs/1902.06241. In the current version, both group and element-wise sparsity are included into the loading matrix.

Usage

1
2
3
dataSimu_group_sparse(n, ds, dataTypes = "GGG", noises = rep(1, 3),
  margProb = 0.1, sparse_ratio = 0, SNRgc = 1, SNRlc = rep(1, 3),
  SNRd = rep(1, 3))

Arguments

n

the number of objects

ds

a vector for the number of variables in each data set

dataTypes

a string indicates the data type of each data set, possible options include 'G': Gaussian, 'B': Bernoulli.

noises

noise levels of simulated data sets

margProb

desired marginal probability for binary data simulation, used to simulate imbalanced binary data.

sparse_ratio

controls the sparse level of element-wise sparsity

SNRgc

SNR for global common structure

SNRlc

SNRs of the local common structures

SNRd

SNRs of the distinct structures

Value

A list contains the simulated data sets and the simulated parameters.

Examples

1
2
3
4
5
6
## Not run: 
dataSimulation <- dataSimu_group_sparse(n=200,
                                       ds=c(400,200,100),
                                       dataTypes='GGB')

## End(Not run)

YipengUva/RpESCA documentation built on July 2, 2019, 6:41 p.m.